Câu hỏi khởi động: Trong 20 phút theo dõi, lưu lượng nước của một con sông được tính theo công thức
Q(t) = ,
trong đó Q được tính theo m3/phút, t tính theo phút, 0 ≤ t ≤ 20 (Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-1, Cornelsen 2016). Khi lưu lượng nước của con sông lên đến 550 m3/phút thì cảnh báo lũ được đưa ra.
Trong thời gian theo dõi, lưu lượng nước của con sông lớn nhất là bao nhiêu? Cảnh báo lũ được đưa ra vào thời điểm nào?
Trả lời:
Xét hàm số Q(t) = với t ∈ [0; 20].
Ta có Q'(t) = ;
Q'(t) = 0 hoặc t = 0.
Bảng biến thiên của hàm số trên đoạn [0; 20] như sau:
Từ bảng biến thiên suy ra Q(t) = tại , tức là lưu lượng nước của con sông lớn nhất là m3/phút tại thời điểm phút.
Cảnh báo lũ được đưa ra khi lưu lượng nước của con sông lên đến 550 m3/phút, tức là Q(t) ≥ 550 ⇔ ≥ 550 ⇔ ≥ 0 .
Lại có t ∈ [0; 20] nên .
Vậy tại thời điểm t ∈ [15; 5 +5] phút thì cảnh báo lũ được đưa ra.
I. Sơ đồ khảo sát hàm số
Hoạt động: Lập bảng biến thiên và vẽ đồ thị của hàm số y = x2 – 2x – 3.
Trả lời:
1. Tập xác định: .
2. Sự biến thiên:
- Giới hạn tại vô cực:
;
↔
↔
- Bảng biến thiên:

3. Vẽ đồ thị hàm số
Luyện tập, vận dụng 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Trả lời:
1) Tập xác định: ℝ \ {– 1}.
2) Sự biến thiên
• Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
. Do đó, đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số.
y = 1, = 1. Do đó, đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
• , với mọi x ≠ – 1.
• Bảng biến thiên:
Hàm số đồng biến trên mỗi khoảng (– ∞; – 1) và (– 1; + ∞).
Hàm số không có cực trị.
3) Đồ thị
• Giao điểm của đồ thị với trục tung: (0; – 1).
• Giao điểm của đồ thị với trục hoành: (1; 0).
• Đồ thị hàm số đi qua các điểm (0; – 1), (1; 0), (– 2; 3) và (– 3; 2).
• Đồ thị hàm số nhận giao điểm I(– 1; 1) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
Vậy đồ thị hàm số được cho ở hình trên.
II. Khảo sát sự biến thiên và vẽ đồ thị hàm số bậc ba
Luyện tập, vận dụng 2: Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau:
a) y = – x3 + 3x – 2;
b) y = x3 + 3x2 + 3x + 1.
Trả lời:
a)
1. Tập xác định: .
2. Sự biến thiên:
- Giói hạn tại vô cực:
,
.
;
↔
↔
(thỏa mãn).
Bảng biến thiên:

Hàm số đã cho đồng biến trên khoảng , nghịch biến trên mỗi khoản
và
.
Hàm số đạt cực đại tại ,
; hàm số đạt cực tiểu tại
,
.
3. Đồ thị:
- Giao điểm của đồ thị với trục tung:
.
- Các giao điểm của đồ thị với trục hoành:
và
.
- Đồ thị hàm số đi qua các điểm
,
,
và
.
Vậy đồ thị hàm số được cho như hình trên.
b)
1. Tập xác định: .
2. Sự biến thiên:
- Giới hạn tại vô cực:
,
.
;
với
(Dấu
xảy ra ↔
).
- Bảng biến thiên:

Hàm số đồng biến trên khoảng .
Hàm số không có cực trị.
3. Đồ thị:
- Giao điểm của đồ thị với trục tung:
.
- Giao điểm của đồ thị với trục hoành:
.
- Đồ thị hàm số đi qua các điểm
,
,
.
Vậy đồ thị hàm số được cho như hình vẽ trên.
III. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Luyện tập, vận dụng 3: Khảo sát sự biến thiên và vẽ đồ thị hàm số
Trả lời:
1) Tập xác định: ℝ \ {2}.
2) Sự biến thiên
• Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
y = +, y = - . Do đó, đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.
y = -2, y = - 2. Do đó, đường thẳng y = – 2 là tiệm cận ngang của đồ thị hàm số.
• > 0, với mọi x ≠ 2.
• Bảng biến thiên:
Hàm số đồng biến trên mỗi khoảng (– ∞; 2) và (2; + ∞).
Hàm số không có cực trị.
3) Đồ thị
• Giao điểm của đồ thị với trục tung: (0; 3).
• Giao điểm của đồ thị với trục hoành: (– 3; 0).
• Đồ thị hàm số đi qua các điểm (0; 3), (– 3; 0), (4; – 7) và (7; – 4).
• Đồ thị hàm số nhận giao điểm I(2; – 2) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
Vậy đồ thị hàm số được cho ở hình trên.
Luyện tập, vận dụng 4: Khảo sát sự biến thiên và vẽ đồ thị hàm số
Trả lời:
1. Tập xác định: .
2. Sự biến thiên:
- Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
,
. Do đó, đường thẳng
là tiệm cận đứng của đồ thị hàm số.
,
. Do đó, đường thẳng
là tiệm cận ngang của đồ thị hàm số.
với
.
- Bảng biến thiên:

Hàm số nghịch biến trên mỗi khoảng và
.
Hàm số không có cực trị.
3. Đồ thị:
- Giao điểm của đồ thị với trục tung:
.
- Giao điểm của đồ thị với trục hoành:
.
- Đồ thị hàm số đi qua các điểm
,
,
và
.
- Đồ thị hàm số nhận giao điểm
của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
Vậy đồ thị hàm số được cho ở hình trên.
Luyện tập, vận dụng 5: Khảo sát sự biến thiên và vẽ đồ thị hàm số .
Trả lời:
1) Tập xác định: ℝ \ {– 1}.
2) Sự biến thiên
• Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
Ta viết hàm số đã cho dưới dạng: y = 1 - x - .
y = - , y = +.
. Do đó, đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số.
[ y - (1 - x)] = = 0, [ y - (1 - x)] = =0. Do đó, đường thẳng y = 1 – x là tiệm cận xiên của đồ thị hàm số.
• ;
y' = 0 ⇔ – x2 – 2x = 0 ⇔ x = 0 hoặc x = – 2.
• Bảng biến thiên:
Hàm số đồng biến trên mỗi khoảng (– 2; – 1) và (– 1; 0); nghịch biến trên mỗi khoảng (– ∞; – 2) và (0; + ∞).
Hàm số đạt cực đại tại x = 0, yCĐ = 0; đạt cực tiểu tại x = – 2, yCT = 4.
3) Đồ thị
• Đồ thị hàm số đi qua gốc tọa độ O(0; 0).
• Đồ thị hàm số đi qua các điểm (0; 0), (– 2; 4), và .
• Đồ thị hàm số nhận giao điểm I(– 1; 2) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
Vậy đồ thị hàm số được cho ở hình trên.
Luyện tập, vận dụng 6: Khảo sát sự biến thiên và vẽ đồ thị hàm số .
Trả lời:
1. Tập xác định: .
2. Sự biến thiên:
- Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
,
.
,
. Do đó, đường thẳng
là tiệm cận đứng của đồ thị hàm số.
,
. Do đó, đường thẳng
là tiệm cận xiên của đồ thị hàm số.
với
- Bảng biến thiên:

Hàm số nghịch biến trên mỗi khoảng và
.
Hàm số không có cực trị.
3. Đồ thị
- Giao điểm của đồ thị với trục tung:
.
- Đồ thị hàm số cắt trục hoành tại các điểm
,
.
- Đồ thị hàm số đi qua các điểm
,
,
và
.
- Đồ thị hàm số nhận giao điểm
của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
Vậy đồ thị hàm số được cho ở hình trên.
IV. Ứng đụng đạo hàm và khảo sát hàm số để giải quyết một số vấn đề liên quan đến thực tiễn
Luyện tập, vận dụng 7: Trong Ví dụ 9, góc dốc của con đường trên đoạn [– 1 000; 1 000] lớn nhất tại điểm nào?
Trả lời:
Xét hàm số
với x ∈ [– 1 000; 1 000].
Ta có .
Trên đoạn (– 1 000; 1 000), f'(x) = 0 khi .
Bài tập
Bài tập 1: Đồ thị hàm số y = x3 – 3x – 1 là đường cong nào trong các đường cong sau?
Đáp án: B
Giải thích:
Ta có:
↔
hoặc
.
Bảng biến thiên của hàm số:

Bài tập 2: Đường cong ở Hình 29 là đồ thị của hàm số:
A. y = x3 + x2 + 2x + 2.
B. y = – x3 – 4x2 – x + 2.
C. y = x3 + 3x2 – 4x + 2.
D. y = x3 + 3x2 + 4x + 2.
Đáp án: D
Giải thích:
Ta thấy đồ thị hàm số đi lên từ trái qua phải nên loại đáp án B.
Đồ thị hàm số đi qua điểm (– 2; – 2) nên thay vào các đáp án ta loại được đáp án A và đáp án C. Vậy đường cong trong Hình 29 là đồ thị hàm số ở đáp án D.
Bài tập 3: Đường cong nào sau đây là đồ thị của hàm số ?
Đáp án: B.
Giải thích:
Ta có:
,
nên đường thẳng
là tiệm cận ngang của đồ thị hàm số.
,
nên đường thẳng
là tiệm cận đứng của đồ thị hàm số.
Bài tập 4: Đường cong ở Hình 30 là đồ thị của hàm số:
Đáp án: A
Giải thích:
Đồ thị hàm số trong Hình 30 cắt trục tung tại điểm (0; – 2) và có tiệm cận đứng là đường thẳng x = – 1 và tiệm cận xiên là đường thẳng y = – x – 1.
Thay tọa độ điểm (0; – 2) vào các hàm số ở các đáp án ta loại được đáp án B và D.
Ta thấy đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số và đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số .
Vậy đường cong trong Hình 30 là đồ thị của hàm số .
Bài tập 5: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) y = 2x3 – 3x2 + 1;
b) y = – x3 + 3x2 – 1;
c) y = (x – 2)3 + 4;
d) y = – x3 + 3x2 – 3x + 2;
e)
g) y = – x3 – 3x.
Trả lời:
a)
1. Tập xác định: .
2. Sự biến thiên:
- Giới hạn tại vô cực:
,
.
;
↔
hoặc
.
- Bảng biến thiên:

Hàm số đã cho đồng biến trên mỗi khoảng và
; nghịch biến trên khoảng
.
Hàm số đạt cực đại tại ,
; đạt cực tiểu tại
,
.
3. Đồ thị:
- Giao điểm của đồ thị với trục tung:
.
- Giao điểm của đồ thị với trục hoành:
;
.
- Đồ thị hàm số đi qua các điểm:
,
,
và
.
Vậy đồ thị hàm số được cho như hình vẽ trên.
b)
1. Tập xác định:.
2. Sự biến thiên:
- Giới hạn tại vô cực:
,
.
;
↔
hoặc
.
Bảng biến thiên:

Hàm số đã cho đồng biến trên khoảng ; nghịch biến trên mỗi khoảng
và
.
Hàm số đạt cực đại tại ,
; đạt cực tiểu tại
,
.
3. Đồ thị:
- Giao điểm của đồ thị với trục tung:
.
- Giao điểm của đồ thị với trục hoành: có 3 điểm.
- Đồ thị hàm số đi qua các điểm
,
,
và
.
Vậy đồ thị hàm số được cho như hình vẽ trên.
c)
1. Tập xác định: .
2. Sự biến thiên:
- Giới hạn tại vô cực:
,
.
;
với
(Dấu
xảy ra ↔
)
- Bảng biến thiên:

Hàm số đồng biến trên khoảng .
Hàm số không có cực trị.
3. Đồ thị:
- Giao điểm của đồ thị với trục tung:
.
- Giao điểm của đồ thị với trục hoành: có 1 điểm.
- Đồ thị hàm số đi qua các điểm
,
,
và
.
Vậy đồ thị hàm số được cho như hình vẽ trên.
d)
1. Tập xác định: .
2. Sự biến thiên:
- Giới hạn tại vô cực:
,
.
;
với
(Dấu
xảy ra ↔
)
- Bảng biến thiên:

Hàm số nghịch biến trên khoảng .
Hàm số không có cực trị.
3. Đồ thị:
- Giao điểm của đồ thị với trục tung:
.
- Giao điểm của đồ thị với trục hoành:
.
- Đồ thị hàm số đi qua các điểm
,
và
.
Vậy đồ thị hàm số được cho như hình vẽ trên.
e)
1. Tập xác định: .
2. Sự biến thiên:
- Giới hạn tại vô cực:
,
.
;
với
.
- Bảng biến thiên:

Hàm số đồng biến trên khoảng .
Hàm số không có cực trị.
3. Đồ thị:
- Giao điểm của đồ thị với trục tung:
.
- Giao điểm của đồ thị với trục hoành: có 1 điểm.
- Đồ thị hàm số đi qua các điểm
và
.
Vậy đồ thị hàm số được cho như hình vẽ trên.
f)
1. Tập xác định: .
2. Sự biến thiên:
- Giới hạn tại vô cực:
,
.
;
với
.
- Bảng biến thiên:

Hàm số nghịch biến trên khoảng .
Hàm số không có cực trị.
3. Đồ thị:
- Đồ thị hàm số đi qua gốc tọa độ
.
- Đồ thị hàm số đi qua các điểm
,
và
.
Vậy đồ thị hàm số được cho như hình vẽ trên.
Bài tập 6: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
Trả lời:
a)
1) Tập xác định: ℝ \ {– 1}.
2) Sự biến thiên
• Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
. Do đó, đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số.
y = 1,y = 1. Do đó, đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
• > 0, với mọi x ≠ – 1.
• Bảng biến thiên:
Hàm số đồng biến trên mỗi khoảng (– ∞; – 1) và (– 1; + ∞).
Hàm số không có cực trị.
3) Đồ thị
• Giao điểm của đồ thị với trục tung: (0; – 1).
• Giao điểm của đồ thị với trục hoành: (1; 0).
• Đồ thị hàm số đi qua các điểm (0; – 1), (1; 0), (– 2; 3) và (– 3; 2).
• Đồ thị hàm số nhận giao điểm I(– 1; 1) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
Vậy đồ thị hàm số được cho ở hình trên.
b)
1) Tập xác định: ℝ \ {– 1}.
2) Sự biến thiên
• Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
. Do đó, đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số.
y = - 2,y = - 2. Do đó, đường thẳng y = – 2 là tiệm cận ngang của đồ thị hàm số.
• < 0, với mọi x ≠ – 1 .
• Bảng biến thiên:
Hàm số nghịch biến trên mỗi khoảng (– ∞; – 1) và (– 1; + ∞).
Hàm số không có cực trị.
3) Đồ thị
• Đồ thị hàm số đi qua gốc tọa độ O(0; 0).
• Đồ thị hàm số đi qua các điểm (– 3; – 3), (– 2; – 4), (0; 0) và (1; – 1).
• Đồ thị hàm số nhận giao điểm I(– 1; – 2) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
Vậy đồ thị hàm số được cho ở hình trên.
c)
1) Tập xác định: ℝ \ {1}.
2) Sự biến thiên
• Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
Ta viết hàm số đã cho dưới dạng: .
y = + ∞,y = - ∞.
y = - ∞, y = + ∞. Do đó, đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
[y - (x - 2)] = = 0, [y - (x - 2)]= = 0. Do đó, đường thẳng y = x – 2 là tiệm cận xiên của đồ thị hàm số.
• ;
y' = 0 ⇔ x2 – 2x – 3 = 0 ⇔ x = – 1 hoặc x = 3.
• Bảng biến thiên:
Hàm số đồng biến trên mỗi khoảng (– ∞; – 1) và (3; + ∞); nghịch biến trên mỗi khoảng (– 1; 1) và (1; 3).
Hàm số đạt cực đại tại x = – 1, yCĐ = – 5; đạt cực tiểu tại x = 3, yCT = 3.
3) Đồ thị
• Giao điểm của đồ thị với trục tung: (0; – 6).
• Đồ thị hàm số không cắt trục hoành.
• Đồ thị hàm số đi qua các điểm (– 3; – 6), (– 1; – 5), (0; – 6), (2; 4), (3; 3) và (5; 4).
• Đồ thị hàm số nhận giao điểm I(1; – 1) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
Vậy đồ thị hàm số được cho ở hình trên.
d)
1) Tập xác định: ℝ \ {2}.
2) Sự biến thiên
• Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
Ta viết hàm số đã cho dưới dạng: .
y = - ∞,y = + ∞.
y = + ∞, y = - ∞. Do đó, đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.
[y - (-x)] = = 0, [y - (-x)] = = 0. Do đó, đường thẳng y = – x là tiệm cận xiên của đồ thị hàm số.
• ;
y' = 0 ⇔ – x2 + 4x = 0 ⇔ x = 0 hoặc x = 4.
• Bảng biến thiên:
Hàm số đã cho đồng biến trên mỗi khoảng (0; 2) và (2; 4); nghịch biến trên mỗi khoảng (– ∞; 0) và (4; + ∞).
Hàm số đạt cực đại tại x = 4, yCĐ = – 6; đạt cực tiểu tại x = 0, yCT = 2.
3) Đồ thị
• Giao điểm của đồ thị với trục tung: (0; 2).
• Đồ thị hàm số không cắt trục hoành.
• Đồ thị hàm số đi qua các điểm (– 2; 3), (0; 2), (1; 3), (3; – 7), (4; – 6) và (6; – 7).
• Đồ thị hàm số nhận giao điểm I(2; – 2) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
Vậy đồ thị hàm số được cho ở hình trên.
e)
1) Tập xác định: ℝ \ {– 2}.
2) Sự biến thiên
• Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
Ta viết hàm số đã cho dưới dạng: .
y = + ∞,y = - ∞.
. Do đó, đường thẳng x = – 2 là tiệm cận đứng của đồ thị hàm số.
[y - (2x - 1)] = = 0, [y - (2x - 1)] = = 0. Do đó, đường thẳng y = 2x – 1 là tiệm cận xiên của đồ thị hàm số.
• > 0 với mọi x ≠ – 2;
• Bảng biến thiên:
Hàm số đồng biến trên mỗi khoảng (– ∞; – 2) và (– 2; + ∞).
Hàm số không có cực trị.
3) Đồ thị
• Giao điểm của đồ thị với trục tung: .
• Giao điểm của đồ thị với trục hoành:
Giải phương trình ta được x = 1 và .
Vậy đồ thị hàm số cắt trục hoành tại hai điểm (1; 0) và .
• Đồ thị hàm số đi qua các điểm (– 3; – 4), , (– 1; – 6), và (1; 0).
• Đồ thị hàm số nhận giao điểm I(– 2; – 5) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
Vậy đồ thị hàm số được cho ở hình trên.
g)
1) Tập xác định: ℝ \ {2}.
2) Sự biến thiên
• Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
Ta viết hàm số đã cho dưới dạng: .
y = - ∞,y = + ∞.
y = - ∞, y = + ∞. Do đó, đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.
[y - (-x)] = = 0, [y - (-x)] = = 0. Do đó, đường thẳng y = – x là tiệm cận xiên của đồ thị hàm số.
• < 0 với mọi x ≠ 2.
• Bảng biến thiên:
Hàm số đã cho nghịch biến trên mỗi khoảng (– ∞; 2) và (2; + ∞).
Hàm số không có cực trị.
3) Đồ thị
• Giao điểm của đồ thị với trục tung: .
• Giao điểm của đồ thị với trục hoành:
Giải phương trình ta được x = – 1 và x = 3.
Vậy đồ thị hàm số cắt trục hoành tại hai điểm (– 1; 0) và (3; 0).
• Đồ thị hàm số đi qua các điểm (– 1; 0), , (1; – 4), (3; 0) và (5; – 4).
• Đồ thị hàm số nhận giao điểm I(2; – 2) của hai đường tiệm cận của đồ thị làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.
Vậy đồ thị hàm số được cho ở hình trên.
Bài tập 7: Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng.
Trong khoảng 70 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính (gần đúng) bởi hàm
h(t) = – 0,01t3 + 1,1t2 – 30t + 250,
trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét (Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-1, Cornelsen 2016).
a) Tìm thời điểm t (0 ≤ t ≤ 70) sao cho con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng. Khoảng cách nhỏ nhất này là bao nhiêu?
b) Vẽ đồ thị của hàm số y = h(t) với 0 ≤ t ≤ 70 (đơn vị trên trục hoành là 10 giây, đơn vị trên trục tung là 50 km).
c) Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t (giây) kể từ khi đốt cháy các tên lửa hãm với 0 ≤ t ≤ 70. Xác định hàm số v(t).
d) Vận tốc tức thời của con tàu lúc bắt đầu hãm phanh là bao nhiêu? Tại thời điểm t = 25 (giây) là bao nhiêu?
e) Tại thời điểm t = 25 (giây), vận tốc tức thời của con tàu vẫn giảm hay đang tăng trở lại?
Trả lời:
a) Xét hàm số , với
.
Ta có: ;
Trên khoảng ,
↔
.
,
,
.
Do đó, tại
.
Vậy tại thười điểm giây thì con tàu đạt khoản cách nhỏ nhất so với bề mặt của Mặt Trăng và khoảng cách nhỏ nhất này bằng 8,08 km.
b) Xét hàm số , với
.
Ta có: ;
Trên khoảng ,
↔
(thỏa mãn) hoặc
.
Ta có bảng biến thiên:

Trên khoảng , đồ thị hàm số
đi qua các điểm
,
,
và
.
c) Ta có: là vận tốc tức thời của con tàu ở thời điểm
(s) kể từ khi đốt cháy các tên lửa hãm với
.
Khi đó: với
.
d) (km/s).
e) Tại thời điểm (s), lúc đó
, căn cứ vào bảng biến thiên ở câu (b), ta thấy
, tức là
, vậy vận tốc tức thời của con tàu đang tăng trở lại.
Bài tập 8: Xét phản ứng hóa học tạo ra chất C từ hai chất A và B:
A + B → C.
Giả sử nồng độ của hai chất A và B bằng nhau [A] = [B] = a (mol/l). Khi đó, nồng độ của chất C theo thời gian t (t > 0) được cho bởi công thức: [C] = (mol/l), trong đó K là hằng số dương (Nguồn: Đỗ Đức Thái (Chủ biên) và các đồng tác giả, Giáo trình Phép tính vi tích phân hàm một biến, NXB Đại học Sư phạm, 2023).
a) Tìm tốc độ phản ứng ở thời điểm t > 0.
b) Chứng minh nếu x = [C] thì x'(t) = K(a – x)2.
c) Nêu hiện tượng xảy ra với nồng độ các chất khi t → + ∞.
d) Nêu hiện tượng xảy ra với tốc độ phản ứng khi t → + ∞.
Trả lời:
a) Ta có
A + B → C
Ban đầu: a + a 0
Sau thời gian t:
Tốc độ ở thời điểm t > 0 là v(t) = .
b) Ta có x = [C], tức là x = .
Từ đó suy ra x'(t) = K(a – x)2.
Vậy khi t → + ∞ thì nồng độ các chất A, B và C bằng nhau.
Vậy khi t → + ∞, tốc độ phản ứng dần về 0, khi đó phản ứng kết thúc.