Bài tập 1: Thực hiện các phép tính sau:
a) 4 . 25 – 12 . 5 + 170 : 10;
b) (7 + 33 : 32) . 4 – 3;
c) 12 : {400 : [500 – (125 + 25 . 7)]};
d) 168 + {[2 . (24 + 32) – 2560] : 72}.
Lời giải:
a) 4 . 25 – 12 . 25 + 170 : 10
= (4 . 25) – (12 . 25) + (170 : 10)
= 100 - 300 + 17
= -183
b) (7 + 3
= (7 + 3) .4 – 3
= 10 . 4 – 3
= 40 – 3
= 37
c) 12 : {400 : [500 – (125 + 25 . 7)}
= 12 : {400 : [500 – (125 + 175)}
= 12 : [400: (500 - 300)]
= 12 : (400 : 200)
= 12 : 2 = 6
d) 168 + {[2 . (2
= 168 + [2 . (16 + 9) – 1] : 49
= 168 + 49: 49
= 168 + 1
= 169
Bài tập 2: Gọi P là tập hợp các số nguyên tố. Chọn kí hiệu "∈", "∉" thích hợp cho :
a) 2 P;
b) 47 P;
c) a P với a = 3 . 5 . 7 . 9 + 20;
d) b P với b = 5 . 7 . 11 + 13 . 17.
Lời giải:
a) 2 ∈ P
b) 47 ∈ P
c) a = 3 . 5 . 7 . 9 + 20 = 965 chia hết cho 5.
=> a ∉ P
d) b = 5 . 7 . 11 + 13 . 17 = 606 chia hết cho 2.
=> b ∉ P
Bài tập 3: Phân tích các số sau ra thừa số nguyên tố:
a) 51;
b) 76;
c) 225;
d) 1 800.
Lời giải:
Ta có thể phân tích một số ra thừa số nguyên tố bằng cách viết "theo cột dọc" hoặc "rẽ nhánh".
a) Ta có:
Vậy 51 = 3 . 17.
b) Ta có:
Vậy 76 = 2 . 2 . 19 = 22 . 19.
c) Ta có:
Vậy 225 = 3 . 3 . 5 . 5 = 32 . 52.
d) Ta có: 1 800 = 10 . 180
Vậy 1 800 = 2 . 5 . 2 . 5 . 2 . 3 . 3 = 23 . 32 . 52.
Bài tập 4: Tìm ƯCLN của hai số:
a) 40 và 60;
b) 16 và 124;
c) 41 và 47.
Lời giải:
a) 40 = 2
60 = 2
=> ƯCLN(40,60) = 2
b) 16 = 2
124 = 2
=> ƯCLN(16,124) = 2
c) 41 và 47 là hai số nguyên tố cùng nhau
=> ƯCLN(41, 47) = 1
Bài tập 5: Tìm BCNN của các số sau
a) 72 và 540.
b) 28, 49, 64.
c) 43 và 53.
Lời giải:
Bài tập 6: Dọc theo hai bên của một con đường dài 1 500m, các cột điện được dựng cách nhau 75 m (bắt đầu dựng từ đầu đường). Để tăng cường ánh sáng, người ta dựng lại các cột điện ở cả hai bên con đường (cũng bắt đầu dựng từ đầu đường) sao cho ở mỗi bên đường các cột điện chỉ còn cách nhau 50m. Họ tận dụng những cột điện cũ không phải dời đi. Hãy tính tổng chi phí cần thiết để hoàn thành dựng cột điện mới cho con đường, biết chi phí dựng một cột điện mới là 4 triệu đồng.
Lời giải:
Người ta dựng cột điện dọc theo hai bên của một con đường nên ta tính số cột điện cần phải dựng thêm mới trong một bên trước, sau đó nhân đôi lên, ta được tổng tất cả số cột điện mới cần dựng trên cả con đường.
Do số cột điện cũ dựng ở một bên đường được bắt đầu dựng từ đầu đường tới hết con đường và các cột điện được dựng cách nhau 75 m nên vị trí dựng các cột điện này là bội của 75 và không quá 1500.
Mà các bội của 75 và không quá 1500 là: 0; 75; 150; 225; 300; 375; 450; 525; 600; 675; 750; 825; 900; 975; 1050; 1125; 1200; 1275; 1350; 1425; 1500.
Do đó ta có 21 cột điện cũ được dựng một bên đường (thứ tự từ cột 1 đến cột 21 tương ứng với các vị trí đặt cột từ vị trí 0 m đến 1500 m).
Để tăng cường ánh sáng, người ta dựng lại các cột điện cũng bắt đầu từ đầu đường, cách nhau 50 m và tận dụng lại các cột cũ không phải dời đi, có nghĩa các vị trí cột cũ không phải dời đi là các bội chung của 50; 75 và không quá 1500.
Ta có: 50 = 2 . 25 = 2 . 52; 75 = 3 . 25 = 3 . 52
Suy ra BCNN(50, 75) = 2 . 3 . 52 = 150.
Do đó ta có các bội chung của 50; 75 và không quá 1500 là bội của BCNN(50,75) = 150 và không quá 1500, đó là: 0; 150; 300; 450; 600; 750; 900; 1050; 1200; 1350; 1500.
Nên ta có 11 cột cũ được giữ lại tận dụng, tương ứng với thứ tự các cột điện cũ ở một bên là cột 1; 3; 5; 7; 9; 11; 13; 15; 17; 19; 21.
Mà khoảng cách giữa các cột cũ là đều nhau và bằng 150 m và có 10 khoảng cách cần dựng thêm cột điện mới.
Cho nên ta cần dựng thêm 2 cột điện mới ở vị trí cộng thêm 50 m và 100 m trong từng khoảng cách giữa hai cột cũ được giữ lại.
Do đó, ở một bên đường, ta cần dựng thêm: 2 . 10 = 20 (cột điện mới)
Suy ra ở cả hai bên đường, ta cần dựng thêm số cột điện mới là:
20 . 2 = 40 (cột điện mới)
Tổng chi phí cần thiết để hoàn thành dựng cột điện mới cho con đường là:
4 000 000 . 40 = 160 000 000 (đồng)
Vậy tổng chi phí cần thiết để hoàn thành dựng cột điện mới cho con đường là 160 triệu đồng.
Bài tập 7: Hệ Mặt Trời gồm tám hành tinh, đó là: Sao Thủy, Sao Kim, Trái Đất, Sao Hỏa, Sao Mộc, Sao Thổ, Sao Thiên Vương, Sao Hải Vương. Các hành tinh trong Hệ Mặt Trời chia thành hai nhóm. Nhóm trong gồm: Sao Thủy, Sao Kim, Trái Đất, Sao Hỏa. Nhóm ngoài gồm: Sao Mộc, Sao Thổ, Sao Thiên Vương, Sao Hải Vương. Các hành tinh nhóm trong có khối lượng và kích thước khá nhỏ so với các hành tinh nhóm ngoài. Hai nhóm hành tinh ngăn cách nhau bởi một vành đại tiểu hành tinh và vô số các thiên thạch nhỏ cùng quay quanh Mặt Trời.
a) Viết tập hợp A gồm tám hành tinh trong hệ Mặt Trời.
b) Sắp xếp kích thước của tám hành tinh trong hệ Mặt Trời theo thứ tự tăng dần.
c) Viết tập hợp B gồm bốn hành tinh có kích thước nhỏ nhất và tập hợp C gồm bốn hành tinh có kích thước lớn nhất.
Lời giải:
a) A = {Sao Thuỷ, Sao Kim, Trái Đất, Sao Hoả, Sao Mộc, Sao Thổ, Sao Thiên Vương, Sao Hải Vương}.
b) Kích thước của tám hành tinh trong Hệ Mặt Trời theo thứ tự tăng dần:
Sao Thuỷ < Sao Hỏa < Sao Kim < Trái Đất < Sao Hải Vương < Sao Thiên Vương < Sao Thổ < Sao Mộc.
c) B = {Sao Thuỷ, Sao Hỏa,Sao Kim, Trái Đất}
C = {Sao Hải Vương, Sao Thiên Vương, Sao Thổ, Sao Mộc}.
Bài tập 8: Theo Quyết định số 648/QĐ-BCT ngày 20/3/2019 của Bộ Công Thương, giá bán lẻ điện sinh hoạt từ ngày 20/3/2019 sẽ dao động trong khoảng từ 1 678 đồng đến 2 927 đồng mỗi kWh tùy bậc thang. Dưới đây là bảng so sánh giá điện trước và sau khi điều chỉnh (không tính thuế VAT):
a) Trong tháng 02/2019, gia đình bác Vân tiêu thụ 540 kWh. Gia đình bác Vân phải trả bao nhiêu tiền?
b) Nếu tháng 4/2019, gia đình bác Vân vẫn tiêu thụ 540 kWh thì theo giá mới, số tiền phải trả tăng lên bao nhiêu?
Lời giải:
a) Trong tháng 02/2019 gia đình bác Vân vẫn thanh toán tiền điện theo giá cũ.
Vì gia đình bác Vân tiêu thụ 540kWh là điện bậc 6 nên gia đình bác Vân phải trả theo 6 mức sử dụng điện sinh hoạt.
Do đó để tính giá tiền điện gia đình bác Vân phải trả, ta tính giá tiền trong từng bậc tiêu thụ rồi lấy tổng tất cả, ta được giá tiền bác Vân phải trả.
Giá tiền điện bậc 1 (50 kWh từ kWh thứ 1 đến 50):
1 549 . 50 = 77 450 (đồng)
Giá tiền điện bậc 2 (50 kWh từ kWh thứ 51 đến 100):
1 600 . 50 = 80 000 (đồng)
Giá tiền điện bậc 3 (100 kWh từ kWh thứ 101 đến 200):
1 858 . 100 = 185 800 (đồng)
Giá tiền điện bậc 4 (100 kWh từ kWh thứ 201 đến 300):
2 340 . 100 = 234 000 (đổng)
Giá tiền điện bậc 5 (100 kWh từ kWh thứ 301 đến 400)
2 615 . 100 = 261 500 (đồng)
Ở bậc 6, nhà bác Vân tiêu thụ số kWh điện là:
540 – 400 = 140 (kWh)
Giá tiền điện bậc 6 (140 kWh từ kWh thứ 401 đến 540)
2 701 . 140 = 378 140 (đồng)
Tổng số tiền điện gia đình bác Vân phải trả trong tháng 02/2019 là:
77 450 + 80 000 + 185 800 + 234 000 + 261 500 + 378 140 = 1 216 890 (đồng)
Vậy trong tháng 02/2019, gia đình bác Vân tiêu thụ 540 kWh thì gia đình bác Vân phải trả 1 216 890 đồng.
b) Trong tháng 04/2019, gia đình bác Vân phải thanh toán tiền điện theo giá mới.
Vì gia đình bác Vân vẫn tiêu thụ 540kWh là điện bậc 6 nên gia đình bác Vân phải trả theo 6 mức sử dụng điện sinh hoạt.
Do đó, ta cần tính tiền trong từng mức theo giá mới:
Giá tiền điện bậc 1 (50 kWh từ kWh thứ 1 đến 50):
1 678 . 50 = 83 900 (đồng)
Giá tiền điện bậc 2 (50 kWh từ kWh thứ 51 đến 100):
1 734 . 50 = 86 700 (đồng)
Giá tiền điện bậc 3 (100 kWh từ kWh thứ 101 đến 200):
2 014 . 100 = 201 400 (đồng)
Giá tiền điện bậc 4 (100 kWh từ kWh thứ 201 đến 300):
2 536 . 100 = 253 600 (đổng)
Giá tiền điện bậc 5 (100 kWh từ kWh thứ 301 đến 400)
2 834 . 100 = 283 400 (đồng)
Ở bậc 6, nhà bác Vân tiêu thụ số kWh điện là:
540 – 400 = 140 (kWh)
Giá tiền điện bậc 6 (140 kWh từ kWh thứ 401 đến 540)
2 927 . 140 = 409 780 (đồng)
Tổng số tiền điện gia đình bác Vân phải trả trong tháng 04/2019 là:
83 900 + 86 700 + 201 400 + 253 600 + 283 400 + 409 780 = 1 318 780 (đồng)
Vậy nếu tháng 4/2019, gia đình bác Vân vẫn tiêu thụ 540 kWh thì theo giá mới, số tiền phải trả tăng lên 1 318 780 đồng.