Giải SGK Toán 10 Cánh Diều Bài tập cuối chương III

Bài tập 1: Tìm tập xác định của mỗi hàm số sau:

a) y=1x2x

b) y=x24x+3

c) y=1x1

Trả lời:

a. Biểu thức y=1x2x có nghĩa khi x2x0 {x0x10  {x0x1 

Vậy tập xác định của hàm số đã cho là D=R{0;1}

b. Biểu thức y=x24x+3 có nghĩa khi x24x+30 (x1)(x3)0 {x1x3

Vậy tập xác định của hàm số đã cho là D=(;1][3;+)

c. Biểu thức y=1x1 có nghĩa khi x1>0 x>1 

Vậy tập xác định của hàm số đã cho là D=(1;+)

Bài tập 2: Đồ thị ở Hình 36 cho thấy sự phụ thuộc của lượng hàng hóa được sản xuất (cung) (đơn vị: sản phẩm) vào giá bán (đơn vị: triệu đồng/sản phẩm) đối với một loại hàng hóa.

Bài 2 trang 60 Toán 10 Tập 1 Cánh diều | Giải Toán 10

a) Xác định lượng hàng hóa được sản xuất khi mức giá bán 1 sản phẩm là 2 triệu đồng; 4 triệu đồng.

b) Biết nhu cầu thị trường đang cần 600 sản phẩm. Hỏi với mức giá bán là bao nhiêu thì thị trường cân bằng (thị trường cân bằng khi sản lượng cung bằng sản lượng cầu) ? 

Trả lời:

Hoàn thiện đồ thị Hình 36, ta được: 


a) Quan sát đồ thị hình trên, ta thấy lượng hàng hóa được sản xuất khi mức giá bán 1 sản phẩm là 2 triệu đồng; 4 triệu đồng lần lượt là 300 sản phẩm và 900 sản phẩm. 

b) Nhu cầu thị trường đang cần là 600 sản phẩm, với mức giá bán là 3 triệu đồng/sản phẩm thì thị trường cân bằng. 

Bài tập 3: Một nhà cung cấp dịch vụ Internet đưa ra hai gói khuyến mại cho người dùng như sau:

Gói A: Giá cước 190 000 đồng/tháng.

Nếu trả tiền cước ngay 6 tháng thì sẽ được tặng thêm 1 tháng. 

Nếu trả tiền cước ngay 12 tháng thì sẽ được tặng thêm 2 tháng. 

Gói B: Giá cước 189 000 đồng/tháng.

Nếu trả tiền cước ngay 7 tháng thì số tiền phải trả cho 7 tháng đó là 1 134 000 đồng. 

Nếu trả tiền cước ngay 15 tháng thì số tiền phải trả cho 15 tháng đó là 2 268 000 đồng. 

Giả sử số tháng sử dụng Internet là x (x nguyên dương). 

a) Hãy lập các hàm số thể hiện số tiền phải trả ít nhất theo mỗi gói A, B nếu thời gian dùng không quá 15 tháng. 

b) Nếu gia đình bạn Minh dùng 15 tháng thì nên chọn gói nào? 

Trả lời:


Bài tập 4: Quan sát đồ thị hàm số bậc hai y = ax2 + bx + c ở Hình 37a và Hình 37b rồi nêu:

a) Dấu của hệ số a;

b) Tọa độ đỉnh và trục đối xứng;

c) Khoảng đồng biến;

d) Khoảng nghịch biến;

e) Khoảng giá trị x mà y > 0;

g) Khoảng giá trị x mà y ≤ 0. 


Trả lời:


Bài tập 5: Vẽ đồ thị của mỗi hàm số sau:

a) y = x2 – 3x – 4; 

b) y = x2 + 2x + 1; 

c) y = – x2 + 2x – 2. 

Trả lời:

a) y = x2 – 3x – 4

Ta có: hệ số a = 1 > 0, b = – 3, c = – 4, ∆ = (– 3)2 – 4 . 1 . (– 4) = 25 > 0.

- Parabol có bề lõm hướng lên trên.

- Tọa độ đỉnh I 32;254.

- Trục đối xứng x=32.

- Giao của parabol với trục tung là A(0; – 4).

- Giao với trục hoành tại các điểm B(– 1; 0) và C(4; 0).

- Điểm đối xứng với điểm A(0; – 4) qua trục đối xứng x=32 là điểm D(3; – 4).

Vẽ đường cong đi qua các điểm trên ta được đồ thị của hàm số y = x2 – 3x – 4 như hình dưới. 

Vẽ đồ thị của mỗi hàm số sau: y = x^2 – 3x – 4; y = x^2 + 2x + 1; y = – x^2 + 2x – 2

b) y = x2 + 2x + 1

Ta có hệ số a = 1 > 0, b = 2, c = 1, ∆ = 22 – 4 . 1 . 1 = 0.

- Parabol có bề lõm hướng lên trên. 

- Tọa độ đỉnh I(– 1; 0). 

- Trục đối xứng x = – 1. 

- Giao của parabol với trục tung A(0; 1).

- Giao của parabol với trục hoành chính là đỉnh I(– 1; 0).

- Điểm đối xứng với điểm A(0; 1) qua trục đối xứng x = – 1 là điểm B(– 2; 1). 

Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số y = x2 + 2x + 1 như hình dưới. 

Vẽ đồ thị của mỗi hàm số sau: y = x^2 – 3x – 4; y = x^2 + 2x + 1; y = – x^2 + 2x – 2

c) y = – x2 + 2x – 2

Ta có hệ số a = – 1 < 0, b = 2, c = – 2 và ∆ = 22 – 4 . (– 1) . (– 2) = – 4. 

- Đồ thị hàm số có bề lõm hướng xuống dưới. 

- Tọa độ đỉnh I(1; – 1).

- Trục đối xứng x = 1.

- Giao của parabol với trục tung là A(0; – 2). Điểm đối xứng với A qua trục đối xứng x = 1 là B(2; – 2).

- Parabol không cắt trục hoành.

- Lấy điểm C(3; – 5) thuộc đồ thị hàm số, ta có điểm đối xứng với điểm C qua trục x = 1 là điểm D(– 1; – 5).

Vẽ đồ thị đi qua các điểm trên ta được đồ thị hàm số y = – x2 + 2x – 2 như hình vẽ dưới. 

Vẽ đồ thị của mỗi hàm số sau: y = x^2 – 3x – 4; y = x^2 + 2x + 1; y = – x^2 + 2x – 2

Bài tập 6: Lập bảng xét dấu của mỗi tam thức bậc hai sau:

a) f(x) = – 3x2 + 4x – 1; 

b) f(x) = x2 – x – 12; 

c) f(x) = 16x2 + 24x + 9. 

Trả lời:

a) Tam thức bậc hai f(x) = – 3x2 + 4x – 1 có hệ số a = – 3 < 0, b = 4, c = – 1 và ∆ = 4– 4 . (– 3) . (– 1) = 4 > 0. 

Do đó tam thức f(x) có hai nghiệm phân biệt x1 = 13 và x2 = 1. 

Sử dụng định lý về dấu của tam thức bậc hai, ta lập được bảng xét dấu như sau: 

Lập bảng xét dấu của mỗi tam thức bậc hai sau: f(x) = – 3x^2 + 4x – 1; f(x) = x^2 – x – 12; f(x) = 16x^2 + 24x + 9

b) Tam thức bậc hai f(x) = x2 – x – 12 có hệ số a = 1 > 0, b = – 1, c = – 12 và ∆ = (– 1)2 – 4 . 1 . (– 12) = 49 > 0. 

Do đó tam thức f(x) có hai nghiệm phân biệt x1 = – 3 và x2 = 4.

Sử dụng định lý về dấu của tam thức bậc hai, ta lập được bảng xét dấu sau:

Lập bảng xét dấu của mỗi tam thức bậc hai sau: f(x) = – 3x^2 + 4x – 1; f(x) = x^2 – x – 12; f(x) = 16x^2 + 24x + 9

c) Tam thức bậc hai f(x) = 16x2 + 24x + 9 có hệ số a = 16 > 0, b = 24, c = 9, ∆ = 242 – 4 . 16 . 9 = 0.

Do đó tam thức bậc hai có nghiệm kép x = 34

Sử dụng định lý về dấu của tam thức bậc hai, ta có bảng xét dấu sau: 

Lập bảng xét dấu của mỗi tam thức bậc hai sau: f(x) = – 3x^2 + 4x – 1; f(x) = x^2 – x – 12; f(x) = 16x^2 + 24x + 9

Bài tập 7: Giải các bất phương trình sau:

a) 2x2 + 3x + 1 ≥ 0; 

b) – 3x2 + x + 1 > 0; 

c) 4x2 + 4x + 1 ≥ 0; 

d) – 16x2 + 8x – 1 < 0; 

e) 2x2 + x + 3 < 0; 

g) – 3x2 + 4x – 5 < 0. 

Trả lời:


b. Tam thức bậc hai 3x2+x+1 có hai nghiệm x1=1136,x2=1+136 và có hệ số a=3<0.

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức 3x2+x+1 mang dấu " +" là (1136;1+136).

Vậy tập nghiệm của bất phương trình 3x2+x+1>0 là (1136;1+136).

c) 4x2 + 4x + 1 ≥ 0

Tam thức bậc hai 4x2 + 4x + 1 có ∆ = 42 – 4 . 4 . 1 = 0 nên tam thức này có nghiệm kép là x = 12 và hệ số a = 4 > 0. 

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy 4x2 + 4x + 1 > 0 với mọi x\12 và 4x2 + 4x + 1 = 0 tại x = 12.

Do đó bất phương trình 4x2 + 4x + 1 ≥ 0 với mọi x ∈ ℝ.

Vậy tập nghiệm của bất phương trình là ℝ.

e. Tam thức bậc hai 2x2+x+3 có Δ<0, hệ số a=2>0 nên f(x)>0 với xR

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức 2x2+x+3 mang dấu " " là .

Vậy tập nghiệm của bất phương trình 2x2+x+3<0 là 

g) – 3x2 + 4x – 5 < 0

Tam thức bậc hai – 3x2 + 4x – 5 có ∆ = 42 – 4 . (– 3) . (– 5) = – 44 < 0 và hệ số a = – 3. 

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy – 3x2 + 4x – 5 < 0 (cùng dấu với a) với mọi x

Vậy tập nghiệm của bất phương trình – 3x2 + 4x – 5 < 0 là .

Bài tập 8: Giải các phương trình sau:

a) x+2=x

b) 2x2+3x2=x2+x+6;

c) 2x2+3x1=x+3

Trả lời:


c. 2x2+3x1=x+3.

Ta có x3

Bình phương hai vế ta được 2x2+3x1=(x+3)2x23x10=0

 [x=2 tha mãnx=5 tha mãn

Vậy phương trình có nghiệm {2;5}


Bài tập 9: Một kĩ sư thiết kế đường dây điện từ vị trí A đến vị trí S và từ vị trí S đến vị trí C trên cù lao như Hình 38. Tiền công thiết kế mỗi ki-lô-mét đường dây từ A đến S và từ S đến C lần lượt là 3 triệu đồng và 5 triệu đồng. Biết tổng số tiền công là 16 triệu đồng. Tính tổng số ki-lô-mét đường dây điện đã thiết kế.


Trả lời:

Gọi số ki-lô-mét đường dây điện từ vị trí A đến vị trí S là x (km) (x > 0). 

Khi đó trên hình vẽ ta có: SA = x km, AB = 4 km, BC = 1 km. 

Ta thấy AB = SA + SB, suy ra SB = AB – SA = 4 – x (km). (do SB > 0 nên 4 – x > 0 hay x < 4)

Lại có tam giác SBC vuông tại B nên theo định lý Pythagore ta có: 

SC2 = BC2 + BS2 = 12 + (4 – x)2 = 1 + 16 – 8x + x2 = x2 – 8x + 17 

Suy ra: SC = x28x+17 (km) 

Vì tiền công thiết kế mỗi ki-lô-mét đường dây từ A đến S là 3 triệu đồng nên số tiền để thiết kế toàn bộ đường dây từ A đến S là: 3x (triệu đồng).

Tiền công thiết kế mỗi ki-lô-mét đường dây từ S đến C là 5 triệu đồng nên số tiền để thiết kế toàn bộ đường dây từ S đến C là: 5x28x+17 (triệu đồng). 

Tổng số tiền công thiết kế toàn bộ đường dây từ A đến S và từ S đến C là 16 triệu đồng nên ta có phương trình: 3x+5x28x+17=16

Ta cần giải phương trình 3x+5x28x+17=16 (1). 

Ta có (1) 5x28x+17=163x (2).

Trước hết ta giải bất phương trình: 16 – 3x > 0 ⇔ x < 163;. 

Mà 0 < x < 4 nên điều kiện của phương trình (1) là 0 < x < 4. 

Bình phương hai vế của (2) ta được: 25.(x2 – 8x + 17) = (16 – 3x)2

⇔ 25x2 – 200x + 425 = 256 – 96x + 9x2

⇔ 16x2 – 104x + 169 = 0

⇔ x = 3,25 (thỏa mãn điều kiện). 

Do đó số ki-lô-mét đường dây từ vị trí A đến S là 3,25 km. 

Số ki-lô-mét đường dây từ vị trí S đến C là: x28x+17=3,2528.3,25+17=1,25 (km).

Vậy tổng số ki-lô-mét đường dây đã thiết kế là 3,25 + 1,25 = 4,5 (km).