Giải SGK Toán 6 Kết nối tri thức Bài tập cuối Chương II

Bài 2.53: Tìm x  {50; 108; 189; 1 234; 2 019; 2 020} sao cho:

a) x - 12 chia hết cho 2;

b) x - 27 chia hết cho 3;

c) x + 20 chia hết cho 5;

d) x + 36 chia hết cho 9.

Lời giải:

a) x - 12 chia hết cho 2

Mà 12 chia hết cho 2 nên x chia hết cho 2

Vậy giá trị của x thỏa mãn là 50, 108, 1 234, 2 020.

b) x - 27 chia hết cho 3;

Mà 27 chia hết cho 2 nên x chia hết cho 3

Vậy giá trị của x thỏa mãn là 108, 189, 2 019.

c) x + 20 chia hết cho 5;

Mà 20 chia hết cho 5 nên x chia hết cho 5

Vậy giá trị của x thỏa mãn là 50, 2 020.

d) x + 36 chia hết cho 9

Mà 36 chia hết cho 9 nên x chia hết cho 9

Vậy giá trị của x thỏa mãn là 108, 189


Bài 2.54: Thực hiện phép tính sau rồi phân tích kết quả ra thừa số nguyên tố

a)142 + 52 + 22;

b) 400 : 5 + 40.

Lời giải:

a) 142 + 52 + 2= 196 + 25 + 4 = 225 

Phân tích 225 ra thừa số nguyên tố:

Thực hiện phép tính sau rồi phân tích kết quả ra thừa số nguyên tố

Vậy 142 + 52 + 22 = 225 = 32.52

b) 400 : 5 + 40 = 80 + 40 = 120

Phân tích 120 ra thừa số nguyên tố

Thực hiện phép tính sau rồi phân tích kết quả ra thừa số nguyên tố

Vậy 400 : 5 + 40 = 120 =  23.3.5.

Bài 2.55: Tìm ƯCLN và BCNN của:

a) 21 và 98;

b) 36 và 54.

Lời giải:

a) Ta có: 21 = 3.7;  98 = 2.72

=> ƯCLN(21, 98) = 7 ; BCNN(21, 98) = 2.3.72 = 294

b) Ta có: 36 = 22.32, 54 = 2.33

ƯCLN(36, 54) = 2.32 = 18; BCNN(36, 54) = 22.33 = 108.

Bài 2.56: Các phân số sau đã tối giản chưa? Nếu chưa, hãy rút gọn về phân số tối giản.

a)Các phân số sau đã tối giản chưa? Nếu chưa, hãy rút gọn về phân số tối giản

b)Các phân số sau đã tối giản chưa? Nếu chưa, hãy rút gọn về phân số tối giản

Lời giải:

a) 27123

Ta thấy ƯCLN(27, 123) = 3 nên phân số đã cho chưa tối giản

Ta có 27123=27:3123:3=941 là phân số tối giản

b) 3377

Ta thấy ƯCLN(33, 77) = 11 nên phân số đã cho chưa tối giản

Ta có 3377=33:1177:11=37 là phân số tối giản


Bài 2.57: Thực hiện phép tính:

a)Thực hiện phép tính: a) 5/12 + 3/16 b) 4/15 - 2/9

b)Thực hiện phép tính: a) 5/12 + 3/16 b) 4/15 - 2/9

Lời giải:

a) Ta có: 12 = 22.3;  16 = 24 nên BCNN(12, 16) = 24.3 = 48 nên ta có thể chọn mẫu chung là 48.

Thực hiện phép tính: a) 5/12 + 3/16 b) 4/15 - 2/9

b) Ta có: 15 = 3.5;    9 = 32 nên BCNN(15, 9) = 32.5 = 45 nên ta có thể chọn mẫu chung là 45.

Thực hiện phép tính: a) 5/12 + 3/16 b) 4/15 - 2/9

Bài 2.58: Có 12 quả cam, 18 quả xoài và 30 quả bơ. Mẹ muốn Mai chia đều mỗi loại quả đó vào các túi sao cho mỗi túi đều có cam, xoài, bơ.  Hỏi Mai có thể chia được nhiều nhất là mấy túi quà?

Lời giải:

Vì mẹ muốn Mai chia đều mỗi loại quả đó vào các túi quà sao cho mỗi túi đều có cả cam, xoài và bơ nên số túi là ƯC(12, 18, 30). Do đó số túi quà nhiều nhất mà Mai có thể chia được là ƯCLN(12, 18, 30)

Ta có: 12 = 22.3;  18 = 2.32;  30 = 2.3.5

Thừa số nguyên tố chung là 2 và 3. Số mũ nhỏ nhất của 2 là 1, của 3 là 1

Suy ra ƯCLN(12, 18, 30) = 2.3 = 6

Vậy Mai có thể chia được nhiều nhất 6 túi quà.

Bài 2.59: Bác Nam định kì 3 tháng một lần thay dầu, 6 tháng một lần xoay lốp xe ô tô của mình. Hỏi nếu bác ấy làm hai việc đó cùng lúc vào tháng 4 năm nay, thì lần gần nhất tiếp theo bác ấy sẽ cùng làm hai việc đó vào tháng mấy.

Lời giải:

Số tháng ít nhất tiếp theo mà bác Nam làm hai việc đó cùng một tháng là BCNN(3, 6)

Vì ⁝3 nên BCNN(3, 6) = 6

Do đó sau 6 tháng nữa bác sẽ làm hai việc cùng một tháng.

Nếu bác ấy làm hai việc đó cùng lúc vào tháng 4 năm nay, thì gần nhất lần tiếp theo bác ấy sẽ cùng làm hai việc đó vào tháng 4 + 6 = 10.

Vậy lần gần nhất tiếp theo bác ấy sẽ cùng làm hai việc đó vào tháng 10.

Bài 2.60: Biết rằng hai số 79 và 97 là hai số nguyên tố. Hãy tìm ƯCLN và BCNN của hai số này.

Lời giải:

- Vì 79 và 97 là hai số nguyên tố nên ƯCLN(79, 97) = 1 và BCNN(79, 97) = 79.97 = 7 663

Bài 2.61: Biết hai số 3a.52 và 33.5b có ƯCLN là 33.52 và BCNN là 34.53. Tìm a và b.

Lời giải:

Ta có: ƯCLN.BCNN = 33.52.34.53 = 37.55

Tích hai số đã cho là: 3a. 52. 33.5b = 3a+3.52+b

Vì tích hai số cần tìm bằng tích của ƯCLN và BCNN nên 3a+3.52+b = 37.55

Do đó: a + 3 = 7 và b + 2 = 5 nên a = 4 và b = 3. 

Bài 2.62: Bài toán cổ

Bác kia chăn vịt khác thường

Buộc đi cho được chẵn hàng mới ưa

Hàng 2 xếp thấy chưa vừa

Hàng 3 xếp vẫn còn thừa một con

Hàng 4 xếp vẫn chưa tròn

Hàng 5 xếp thiếu một con mới đầy 

Xếp thành hàng 7, đẹp thay

Vịt bao nhiêu? Tính được ngay mới tài.

                                   (Biết số vịt chưa đến 200 con)

Lời giải:

Giả sử có a con vịt.

Theo các dữ kiện đề bài cho:

Hàng 2 xếp vẫn chưa vừa nghĩa là a là số lẻ ⇒ a + 1 ⋮ 2 (1)

Hàng 3 xếp vẫn còn thừa 1 con nghĩa là (a – 1) ⋮ 3 (2)

Hàng xếp 5 thiếu 1 con mới đầy nghĩa là (a + 1) ⋮ 5 (3)

Xếp thành hàng 7, đẹp thay nghĩa là a ⋮ 7 (4)

Số vịt chưa đến 200 con nghĩa là a < 200.

Từ (1) và (3) suy ra (a + 1) ∈ BC(2; 5) = B(10) = {0; 10; 20; 30; 40; …}.

a ⋮ 7 nên a + 1 chia 7 dư 1.

Các số là bội của 10, chia 7 dư 1 là 50; 120; 190; 260; …

Mà a + 1 ≤ 200 nên a + 1 = 50; 120 hoặc 190.

– Trường hợp 1: a + 1 = 50 thì a = 49 ⋮ 7 (t/m (4))

a – 1 = 48 ⋮ 3 (t/m (2)).

Vậy a = 49 (thỏa mãn).

– Trường hợp 2: a + 1= 120

Suy ra a = 119, suy ra a – 1 = 118 ⋮̸ 3 (không thỏa mãn (2)) (Loại).

– Trường hợp 3: a + 1 = 190

Suy ra a = 189, suy ra a – 1 = 188 ⋮̸ 3 (không thỏa mãn (2)) (Loại).

Vậy số vịt là 49 con.