Bài tập 1: Cho tam giác ABC. Biết a = 49,4; b = 26,4; . Tính hai góc và cạnh c.
Trả lời:
Áp dụng định lí côsin ta có:
c2 = a2 + b2 – 2abcosC = 49,42 + 26,42 – 2.49,4.26,4.cos47°20' ≈ 1 369,6
⇒ c =
Áp dụng hệ quả của định lí côsin ta có
cosA =
⇒
Tam giác ABC có:
Vậy ; ; c ≈ 37.
Bài tập 2: Cho tam giác ABC. Biết a = 24, b = 13, c = 15. Tính các góc .
Trả lời:
Áp dụng hệ quả của định lí côsin, ta có:
cos A =
Áp dụng định lí sin, ta có:
Bài tập 3: Cho tam giác ABC có a = 8, b = 10, c = 13.
a) Tam giác ABC có góc tù không?
b) Tính độ dài trung tuyến AM, diện tích tam giác và bán kính đường tròn ngoại tiếp tam giác đó.
c) Lấy điểm D đối xứng với A qua C. Tính độ dài BD.
Trả lời:
a) Áp dụng hệ quả của định lí côsin ta có:
cosC =
⇒
Suy ra
Vậy tam giác ABC là tam giác tù.
b) Do AM là đường trung tuyến nên M là trung điểm của BC, tức là MB = MC = BC : 2 = 4.
Áp dụng định lí côsin cho tam giác ACM ta có:
AM2 = AC2 + CM2 – 2.AC.CM.cosC = 102 + 42 – 2.10.4.cos91°47'26" = 118,5
⇒ AM ≈ 10,9.
Nửa chu vi của tam giác ABC là :
Áp dụng công thức Heron ta có diện tích tam giác ABC là:
Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC. Khi đó ta có:
Vậy độ dài đường trung tuyến AM ≈ 10,9; diện tích tam giác ABC là 40; bán kính đường tròn ngoại tiếp tam giác ABC là 6,5.
c) Vì D đối xứng với A qua C nên C là trung điểm của AD.
Suy ra AD = 2AC = 2.10 = 20.
Áp dụng hệ quả của định lí côsin cho tam giác ABC ta có:
cosA =
Áp dụng định lí côsin cho tam giác ABD ta có:
BD2 = AD2 + AB2 – 2.AD.AB.cosA = 202 + 132 – 2.20.13. = 159
⇒ BD = ≈ 12,6.
Vậy BD ≈ 12,6.
Bài tập 4: Tính chiều cao AB của một ngọn núi. Biết tại hai điểm C, D cách nhau 1 km trên mặt đất (B, C, D thẳng hàng), người ta nhìn thấy đỉnh A của núi với góc nâng lần lượt là 32° và 40° (Hình 9).
Trả lời:
a. Áp dụng định lí côsin, ta có:
a =
=
Áp dụng định lí sin, ta có:
b. S =
c. Áp dụng định lí sin, ta có:
Ta có: S =
Bài tập 5: Cho hình bình hành ABCD.
a) Chứng minh 2(AB2 + BC2) = AC2 + BD2.
b) Cho AB = 4, BC = 5, BD = 7. Tính AC.
Trả lời:
Bài tập 6: Cho tam giác ABC có a = 15, b = 20, c = 25.
a) Tính diện tích tam giác ABC.
b) Tính bán kính đường tròn ngoại tiếp tam giác ABC.
Trả lời:
a) Nửa chu vi tam giác ABC là :
Áp dụng công thức Heron ta có diện tích tam giác ABC:
Vậy diện tích tam giác ABC là 150 (đơn vị diện tích).
b) Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC.
Ta có diện tích tam giác ABC:
Vậy bán kính đường tròn ngoại tiếp tam giác ABC là 12,5 (đơn vị độ dài).
Bài tập 7: Cho tam giác ABC. Chứng minh rằng:
cotA + cotB + cotC =
Trả lời:
Ta có: cotA =
Áp dụng hệ quả định lí côsin, ta có: cosA =
Lại có: sinA =
Tương tự: cotB =
mà S =
Bài tập 8: Tính khoảng cách AB giữa hai nóc tòa cao ốc. Cho biết khoảng cách từ hai điểm đó đến một vệ tinh viễn thông lần lượt là 370 km, 350 km và góc nhìn từ vệ tinh đến A và B là 2,1°.
Trả lời:
Bài tập 9: Hai chiếc tàu thủy P và Q cách nhau 300 m và thẳng hàng với chân B của tháp hải đăng AB ở trên bờ biển (Hình 2). Từ P và Q, người ta nhìn thấy tháp hải đăng AB dưới các góc và . Tính chiều cao của tháp hải đăng đó.
Trả lời:
Ta có tam giác ABP và tam giác ABQ là các tam giác vuông tại B.
Trong tam giác ABP vuông tại B ta có: tan =
Suy ra : tan35° = ⇒ AB = (300 + QB).tan35° (1)
Trong tam giác ABQ vuông tại B ta có: tan =
Suy ra : tan48° = ⇒ AB = QB.tan48° (2)
Từ (1) và (2) suy ra : (300 + QB).tan35° = QB.tan48°
⇒ QB = ≈ 511,8.
⇒ AB = QB.tan48o ≈ 511,8.tan 48° ≈ 568,4.
Vậy chiều cao của tháp hải đăng khoảng 568,4 m.
Bài tập 10: Muốn đo chiều cao của một ngọn tháp, người ta lấy hai điểm A, B trên mặt đất có khoảng cách AB = 12 m cùng thẳng hàng với chân C của tháp để đặt hai giác kế. Chân của hai giác kế có chiều cao là h = 1,2 m. Gọi D là đỉnh tháp và hai điểm A1, B1 cùng thẳng hàng với C1 thuộc chiều cao CD của tháp. Người ta đo được . Tính chiều cao CD của tháp.
Trả lời: