Khởi động: Ở lớp 7, ta đã học cách thực hiện phép cộng, phép trừ, phép nhân, phép chia các đa thức một biến. Các phép tính với đa thức (nhiều biến) được thực hiện như thế nào?
Lời giải:
- Các phép tính với đa thức nhiều biến thực hiện như các phép tính trong đa thức một biến.
I. Cộng hai đa thức
Hoạt động 1: Cho hai đa thức: P = x2 + 2xy + y2 và Q = x2 – 2xy + y2.
a) Viết tổng P + Q theo hàng ngang.
b) Nhóm các đơn thức đồng dạng với nhau.
c) Tính tổng P + Q bằng cách thực hiện phép tính trong từng nhóm.
Lời giải:
a) Tổng P + Q được viết theo hàng ngang như sau:
P + Q = (x2 + 2xy + y2) + (x2 – 2xy + y2)
b) Nhóm các đơn thức đồng dạng với nhau, ta được:
P + Q = (x2 + 2xy + y2) + (x2 – 2xy + y2)
= (x2 + x2) + (2xy – 2xy) + (y2 + y2)
c) Tổng P + Q bằng cách thực hiện phép tính trong từng nhóm, ta được:
P + Q = (x2 + x2) + (2xy – 2xy) + (y2 + y2)
= 2x2 + 2y2.
Luyện tập, vận dụng 1: Tính tổng của hai đa thức: M = x3 + y3 và N = x3 – y3.
Lời giải:
Tổng: M + N = (
II. Trừ hai đa thức
Hoạt động 2: Cho hai đa thức: P = x2 + 2xy + y2 và Q = x2 – 2xy + y2.
a) Viết hiệu P – Q theo hàng ngang, trong đó đa thức Q được đặt trong dấu ngoặc.
b) Sau khi bỏ dấu ngoặc và đổi dấu mỗi đơn thức của đa thức Q, nhóm các đơn thức đổng dạng với nhau.
c) Tính tổng P – Q bằng cách thực hiện phép tính trong từng nhóm.
Lời giải:
Luyện tập, vận dụng 2: Với ba đa thức A, B, C trong Ví dụ 3, hãy tính:
a) B – C;
b) (B – C) + A.
Lời giải:
a. B-C = (
b. (B-C)+A =
III. Nhân hai đa thức
Hoạt động 3:
a) Tính tích: 3x2 . 8x4;
b) Nêu quy tắc nhân hai đơn thức một biến.
Lời giải:
a) Ta có 3x2 . 8x4 = (3 . 8) (x2 . x4) = 24x6.
b) Quy tắc nhân hai đơn thức một biến:
Muốn nhân hai đơn thức một biến ta làm như sau:
Nhân các hệ số với nhau và nhân các phần biến với nhau;
Thu gọn đơn thức nhận được ở tích.
Luyện tập, vận dụng 3: Tính tích của hai đơn thức:
x3y7 và −2x5y3.
Lời giải:
Hoạt động 4:
a) Tính tích: 11x3 . (x2 – x + 1);
b) Nêu quy tắc nhân đơn thức với đa thức trong trường hợp một biến.
Lời giải:
a. Tính tích:
b. Quy tắc nhân đơn thức với đa thức trong trường hợp một biến: ta nhân đơn thức đó với từng đa thức rồi cộng các kết quả với nhau.
Luyện tập, vận dụng 4: Tính tích:
Lời giải:
Ta có
Hoạt động 5:
a) Tính tích: (x + 1)(x2 – x + 1);
b) Nêu quy tắc nhân hai đơn thức trong trường hợp một biến.
Lời giải:
Luyện tập, vận dụng 5: Tính: (x – y)(x – y).
Lời giải:
Ta có (x – y)(x – y) = x . x – x . y – y . x + y . y = x2 – 2xy + y2.
IV. Chia đa thức cho đơn thức
Hoạt động 6: Tính tích: 9x5y4 . 2x4y2.
Lời giải:
Tính tích:
Luyện tập, vận dụng 6: Cho P = (21x4y5) : (7x3y3). Tính giá trị của biểu thức P tại x = −0,5; y = −2.
Lời giải:
• Ta có: P = (21x4y5) : (7x3y3)
= (21 : 7) (x4: x3) (y5: y3) = 3xy2.
• Giá trị của biểu thức P tại x = −0,5; y = −2 là:
3 . (−0,5) (−2)2 = −1,5 . 4 = −6.
Hoạt động 7: Tính tích: (3xy)(x + y).
Lời giải:
Luyện tập, vận dụng 7: Tìm thương trong phép chia đa thức 12x3y3 – 6x4y3 + 21x3y4 cho đơn thức 3x3y3.
Trả lời:
Tìm thương trong phép chia đa thức:
(
= (12:3)(
= 4.1-2x+7y=4-2x+7y.
Bài tập
Bài tập 1: Thực hiện phép tính:
a) (–xy)(–2x2y + 3xy – 7x);
b) ;
c) (x + y)(x2 + 2xy + y2);
d) (x – y)(x2 – 2xy + y2).
Lời giải:
a) (–xy)(–2x2y + 3xy – 7x)
= (–xy) . (–2x2y) + (–xy) . 3xy – (–xy) . 7x
= 2x3y2 – 3x2y2 + 7x2y.
b)
c) (x + y)(x2 + 2xy + y2)
= x . x2 + x . 2xy + x . y2 + y . x2 + y . 2xy + y . y2
= x3 + 2x2y + xy2 + x2y + 2xy2 + y3
= x3 + (2x2y + x2y) + (xy2+ 2xy2) + y3
= x3 + 3x2y + 3xy2 + y3.
d) (x – y)(x2 – 2xy + y2)
= x . x2 – x . 2xy + x . y2 – y . x2– y . (– 2xy) – y . y2
= x3 – 2x2y + xy2 – x2y + 2xy2 – y3
= x3 – (2x2y + x2y) + (xy2 + 2xy2) – y3
= x3 – 3x2y + 3xy2 – y3.
Bài tập 2: Thực hiện phép tính:
a) (39x5y7) : (13x2y);
b) .
Lời giải:
Bài tập 3: Rút gọn biểu thức:
a) (x – y)(x2 + xy + y2);
b) (x + y)(x2 – xy + y2);
c) ;
d) (x + y)(x – y) + (xy4 – x3y2) : (xy2).
Lời giải:
Rút gọn biểu thức.
a.
b.
c.
d.
Bài tập 4:
a) Rút gọn rồi tính giá trị của biểu thức
P = (5x2 – 2xy + y2) – (x2 + y2) – (4x2 – 5xy + 1)
khi x = 1,2 và x + y = 6,2.
b) Chứng minh giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x:
(x2 – 5x + 4)(2x + 3) – (2x2 – x – 10)(x – 3).
Lời giải:
a) Ta rút gọn biểu thức P như sau:
P = (5x2 – 2xy + y2) – (x2 + y2) – (4x2 – 5xy + 1)
= 5x2 – 2xy + y2–x2 – y2–4x2 + 5xy – 1
= (5x2 –x2 –4x2)+(5xy – 2xy) + (y2– y2) – 1
= 3xy – 1.
Ta có: x = 1,2; x + y = 6,2 suy ra y = 6,2 – x = 6,2 – 1,2 = 5.
Khi đó, giá trị của biểu thức P khi x = 1,2 và y = 5 là:
3 . 1,2 . 5 – 1 = 18 – 1 = 17.
b) Ta có: (x2 – 5x + 4)(2x + 3) – (2x2 – x – 10)(x – 3)
= (2x3 – 10x2 + 8x + 3x2 – 15x + 12) – (2x3 – x2 – 10x – 6x2 + 3x + 30)
= (2x3 – 7x2 – 7x + 12) – (2x3 – 7x2 – 7x + 30)
= 2x3 – 7x2 – 7x + 12 – 2x3 + 7x2 + 7x – 30
= (2x3 – 2x3) + (7x2 – 7x2) + (7x – 7x) + (12 – 30) = –18.
Khi đó, với mọi giá trị của biến x thì
(x2 – 5x + 4)(2x + 3) – (2x2 – x – 10)(x – 3) = –18.
Vậy giá trị của biểu thức đã cho không phụ thuộc vào giá trị của biến x.
Bài tập 5:
a) Chứng minh rằng biểu thức P = 5x(2 – x) – (x + 1)(x + 9) luôn nhận giá trị âm với mọi giá trị của biến x.
b) Chứng minh rằng biểu thức Q = 3x2 + x(x – 4y) – 2x(6 – 2y) + 12x + 1 luôn nhận giá trị dương với mọi giá trị của biến x và y.
Lời giải:
Bài tập 6: Bạn Hạnh dự định cắt một miếng bìa có dạng tam giác vuông với độ dài hai cạnh góc vuông lần lượt là 6 (cm), 8 (cm). Sau khi xem xét lại, bạn Hạnh quyết định tăng độ dài cạnh góc vuông 6 (cm) thêm x (cm) và tăng độ dài cạnh góc vuông 8 (cm) thêm y (cm) (Hình 3). Viết đa thức biểu thị diện tích phần tăng thêm của miếng bìa theo x và y.
Lời giải:
Diện tích của miếng bìa theo dự định lúc đầu là:
Diện tích của miếng bìa sau khi tăng thêm các cạnh góc vuông là:
Vậy phần diện tích tăng thêm sẽ là:
Bài tập 7: Khu vực của nhà bác Xuân có dạng hình vuông. Bác Xuân muốn dành một mảnh đất có dạng hình chữ nhật ở góc khu vườn để trồng rau (Hình 4). Biết diện tích của mảnh đất không trồng rau bằng 475 m2. Tính độ dài x (m) của khu vườn đó.
Lời giải: