Khởi động:
Màn hình phẳng của chiếc ti vi ở Hình 46 có dạng hình chữ nhật.
Hình chữ nhật có những tính chất gì? Có những dấu hiệu nào để nhận biết một tứ giác là hình chữ nhật?
Lời giải:
‒ Hình chữ nhật có:
+ Bốn góc vuông;
+ Hai cạnh đối song song và bằng nhau;
+ Hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.
‒ Dấu hiệu nhận biết hình chữ nhật:
+ Tứ giác có ba góc vuông là hình chữ nhật.
+ Hình bình hành có một góc vuông là hình chữ nhật.
+ Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.
+ Hình thang cân có một góc vuông là hình chữ nhật.
I. Định nghĩa
Hoạt động 1: Cho biết số đo mỗi góc của tứ giác ABCD ở Hình 47.
Lời giải:
- Mỗi góc của tứ giác ABCD ở Hình 47 có số đo bằng 90°.
II. Tính chất
Hoạt động 2:
a) Mỗi hình chữ nhật có là một hình thang cân hay không?
b) Mỗi hình chữ nhật có là một hình bình hành hay không?
Lời giải:
a) Một hình chữ nhật là một hình thang cân
b) Một hình chữ nhật là một hình bình hành
Luyện tập, vận dụng 1: Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O. Gọi M, N lần lượt là hình chiếu của O trên AB, BC. Chứng minh .
Lời giải:
Tứ giác MBNO có 3 góc vuông là OMB, MBN và ONB nên góc còn lại là NOM cũng là góc vuông. Vậy MBNO là hình chữ nhật.
=> MO = BN (1)
MO//BN (hay MO//CN) (2)
N là hình chiếu của O trên BC nên NB=NC (3)
Từ (1) và (3) => MO = NC. kết hợp với (2) suy ra OMNC là hình bình hành (tứ giác cócặp cạnh đối song song và bằng nhau)
=> MN = OC. Mà O là giao điểm 2 đường chéo của hình chữ nhật ABCD nên OC=
III. Dấu hiệu nhận biết
Hoạt động 3:
a) Cho hình bình hành ABCD có . ABCD có phải là hình chữ nhật hay không?
b) Cho hình bình hành ABCD có hai đường chéo AC và BD bằng nhau (Hình 50).
• Hai tam giác ABC và DCB có bằng nhau hay không? Từ đó, hãy so sánh và
• ABCD có phải là hình chữ nhật hay không?
Lời giải:
a) Do ABCD là hình bình hành nên AB // CD và , .
Mặt khác do AB // CD nên
Suy ra
Do đó tứ giác ABCD có nên là hình chữ nhật.
b) • Do ABCD là hình bình hành nên AB = CD và AB // CD.
Xét ΔABC và ΔDCB có:
BC là cạnh chung;
AB = DC (chứng minh trên);
AC = DB (giả thiết)
Do đó ΔABC = ΔDCB (c.c.c)
Suy ra (hai góc tương ứng)
• Do AB // CD nên
Suy ra
.
Theo kết quả của câu a, hình bình hành ABCD có 1 góc vuông nên là hình chữ nhật.
Luyện tập, vận dụng 2: Cho hình bình hành ABCD có hai đường chéo AC và BD cắt nhau tại O thoả mãn . Chứng minh ABCD là hình chữ nhật.
Lời giải:
Bài tập
Bài tập 1: Cho hình thang cân ABCD có AB // CD, . Chứng minh ABCD là hình chữ nhật.
Lời giải:
Do ABCD là hình thang cân có AB // CD nên .
Vì AB // CD nên
Suy ra
Do đó hình thang cân ABCD có nên là hình chữ nhật.
Bài tập 2: Cho tam giác ABC vuông tại A có M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D cho MD = MA. Chứng minh tứ giác ABDC là sao hình chữ nhật và .
Lời giải:
Trên tia đối của tia MA lấy điểm D sao cho MD = MA=> M là trung điểm của AD. Tứ giác ABCD có 2 đường chéo là AD và BC cắt nhau tại trung điểm của mỗi đường nên là hình bình hành. Lại có góc A vuông nên là hình chữ nhật (đpcm)
=> 2 đường chéo AD = BC. Mà AM =
Bài tập 3: Cho hình chữ nhật ABCD có điểm E nằm trên cạnh CD sao cho , . Tính số đo của và .
Lời giải:
Bài tập 4: Một khu vườn có dạng tứ giác ABCD với các góc A, B, D là góc vuông, AB = 400 m, AD = 300 m. Người ta đã làm một cái hồ nước có dạng hình tròn, khi đó vị trí C không còn nằm trong khu vườn nữa (Hình 52). Tính khoảng cách từ vị trí C đến mỗi vị trí A, B, D.
Lời giải:
Xét tứ giác ABCD có .
Do đó ABCD là hình chữ nhật.
Khi đó CB = AD = 300 m, CD = AB = 400 m.
Xét ΔABC vuông tại B, theo định lí Pythagore ta có:
AC2 = AB2 + BC2
Suy ra .
Vậy khoảng cách từ vị trí C đến mỗi vị trí A, B, D lần lượt là 500 m, 300 m và 400 m.
Bài tập 5: Bạn Linh có một mảnh giấy dạng hình tròn. Bạn Linh đố bạn Bình: Làm thế nào có thể chọn ra 4 vị trí trên đường tròn đó để chúng là 4 đỉnh của một hình chữ nhật?
Bạn Bình đã làm như sau:
Bước 1. Gấp mảnh giấy sao cho hai nửa hình tròn trùng khít nhau. Nét gấp thẳng tạo thành đường kính của hình tròn. Ta đánh dấu hai đầu mút của đường kính đó là hai điểm A, C.
Bước 2. Sau đó lại gấp tương tự mảnh giấy đó nhưng theo đường kính mới và đánh dấu hai đầu mút của đường kính mới là hai điểm B, D. Khi đó tứ giác ABCD là hình chữ nhật (Hình 53).
Em hãy giải thích cách làm của bạn Bình.
Lời giải:
- Khi gấp như thế thì giao điểm của 2 đường gấp chính là trọng tâm của hình tròn. Khi đó khoảng cách từ giao điểm đó đến các vị trí đầu mút là bằng nhau. Như vậy tứ giác ABCD có 2 đường chéo bằng nhau (đường kính của hình tròn) và cắt nhau tại trung điểm của mỗi đường nên là hình chữ nhật.