Hoạt động khởi động: Gọi u1; u2; u3; ...; un lần lượt là diện tích các tình huống có độ dài cạnh là 1; 2; 3; ...; n. Tính u3 và u4.
Trả lời:
1. Dãy số là gì?
Khám phá 1: Cho hàm số:
u: N* R
n u(n) = n2.
Tính u(1), u(2), u(50), u(100).
Trả lời:
Ta có:
u(1) = 12 = 1;
u(2) = 22 = 4;
u(50) = 502 = 2 500;
u(100) = 1002 = 10 000.
Khám phá 2: Cho hàm số:
v: {1;2;3;4;5} R
n v(n) = 2n.
Tính v(1), v(2), v(3), v(4), v(5).
Trả lời:
v(1) = 2.1 = 2;
v(2) = 2.2 = 4;
v(3) = 2.3 = 6;
v(4) = 2.4 = 8;
v(5) = 2.5 = 10.
Thực hành 1: Cho dãy số:
u: N* R
n un = n3.
a) Hãy cho biết dãy số trên là hữu hạn hay vô hạn.
b) Viết năm số hạng đầu tiên của dãy số đã cho.
Trả lời:
a) Dãy số trên là dãy số vô hạn.
b)
u(1) = 13 = 1;
u(2) = 23 = 8;
u(3) = 33 = 27;
u(4) = 43 = 64;
u(5) = 53 = 125.
Vận dụng 1: Cho 5 hình tròn theo thứ tự có bán kính 1; 2; 3; 4; 5.
a) Viết dãy số chỉ diện tích của 5 hình tròn này.
b) Tìm số hạng đầu và số hạng cuối của dãy số trên.
Trả lời:
a)
b)
2. Cách xác định dãy số
Khám phá 3: Cho các dãy số (an), (bn), (cn), (dn) được xác định như sau:
+) a1 = 0; a2 = 1; a3 = 2; a4 = 3; a5 = 4.
+) bn = 2n.
+)
+) dn là chu vi của đường tròn có bán kính n.
Tính bốn số hạng đầu tiên của các dãy số trên.
Trả lời:
+) Bốn số hạng đầu của dãy (an) là: a1 = 0; a2 = 1; a3 = 2; a4 = 3.
+) Bốn số hạng đầu của dãy (bn) là:
b1 = 2.1 = 2;
b2 = 2.2 = 4;
b3 = 2.3 = 6;
b4 = 2.4 = 8.
+) Bốn số hạng đầu của dãy (Cn) là:
c1 = 1;
c2 = c1 + 1 = 1 + 1 = 2;
c3 = c2 + 1 = 2 + 1 = 3;
c4 = c3 + 1 = 3 + 1 = 4.
+) dn là chu vi của đường tròn có bán kính n được xác định bởi công thức: dn = 2πn.
Khi đó bốn số hạng đầu của dãy (dn) là:
d1 = 2π.1 = 2π;
d2 = 2π.2 = 4π;
d3 = 2π.3 = 6π;
d4 = 2π.4 = 8π.
Thực hành 2: Cho dãy số
a) Chứng minh
b) Dự đoán công thức số hạng tổng quát của dãy số
Trả lời:
a)
b)
Vận dụng 2: Một chồng cột gỗ được xếp thành các lớp, hai lớp liên tiếp hơn kém nhau 1 cột dỗ (Hình 1). Gọi un là số cột gỗ nằm ở lớp thứ n tính từ trên xuống và cho biết lớp trên cùng có 14 cột gỗ. Hãy xác định dãy số (un) bằng hai cách:
a) Viết công thức số hạng tổng quát un.
b) Viết hệ thức truy hồi.
Trả lời:
a) Ta có u1 = 14, khi đó:
u2 = 14 + 1 = 15;
u3 = 15 + 1 = 14 + 2.1;
u4 = 14 + 3.1
Khi đó công thức tổng quát của dãy số (un) là: un = 14 + (n – 1).1.
b) Hệ thức truy hồi của dãy số (un) là:
3. Dãy số tăng, dãy số giảm
Khám phá 4: Cho hai dãy số (an) và (bn) được xác định như sau: an = 3n + 1, bn = – 5n.
a) So sánh an và an + 1, ∀n ∈ ℕ*.
b) So sánh bn và bn + 1, ∀n ∈ ℕ*.
Trả lời:
a) Ta có: an = 3n + 1, an + 1 = 3(n + 1) + 1 = 3n + 4
Vì n ∈ ℕ* nên 3n + 4 > 3n + 1 hay an + 1 > an.
b) Ta có: bn = – 5n, bn + 1 = – 5(n + 1) = – 5n – 5
Vì n ∈ ℕ* nên – 5n – 5 < – 5n hay bn – 1 < bn.
Thực hành 3: Xét tính tăng, giảm của các dãy số sau:
a)
b)
c)
Trả lời:
a) Ta có:
Vậy
b) Ta nhận thấy các số hạng của dãy
Suy ra
Vậy
c) Ta có:
Vậy
Vận dụng 3: Một chồng cột gỗ được xếp thành các lớp, hai lớp liên tiếp nhau hơn kém nhau 1 cột gỗ (Hình 2).
a) Gọi u1 = 25 là số cột gỗ có ở hàng dưới cùng của chồng cột gỗ, un là số cột gỗ có ở hàng thứ n tính từ dưới lên trên. Xét tính tăng, giảm của dãy số này.
b) Gọi vt = 14 là số cột gỗ có ở hàng trên cùng của chồng cột gỗ, vn là số cột gỗ có ở hàng thứ n tính từ trên xuống dưới. Xét tính tăng, giảm của dãy số này.
Trả lời:
a) (un) là số cột gỗ có ở hàng thứ n tính từ dưới lên trên nên (un) là dãy số giảm.
b) (vn) là số cột gỗ có ở hàng thứ n tính từ trên xuống dưới nên (vn) là dãy số tăng.
4. Dãy số bị chặn
Khám phá 5: Cho dãy số
Trả lời:
Thực hành 4: Xét tính bị chặn của các dãy số sau:
a) (an) với ;
b) (bn) với .
Trả lời:
a) Vì nên , ∀n ∈ ℕ*.
Do đó dãy số (an) bị chặn trên và chặn dưới.
Vì vậy dãy số (an) bị chặn.
b) Ta có:
Vì n ∈ ℕ* nên nên hay bn < 1.
Vì n ∈ ℕ* nên hay bn > 0.
Suy ra 0 < bn < 1. Do đó (bn) là dãy bị chặn trên và chặn dưới.
Vì vậy dãy số (bn) bị chặn.
Bài tập
Bài tập 1: Tìm
Trả lời:
Bài tập 2: Cho dãy số (un) với . Tìm u1, u2, u3 và dự đoán công thức số hạng tổng quát của un.
Trả lời:
Ta có:
Dự đoán công thức tổng quát:
Bài tập 3: Xét tính tăng, giảm của dãy số
Trả lời:
Ta có:
Vậy dãy số
Bài tập 4: Xét tính bị chặn của các dãy số sau:
a) (an) với ;
b) (un) với .
Trả lời:
a) Vì và nên
Do đó
Suy ra dãy số (an) bị chặn.
b) Ta có:
Vì n ∈ ℕ* nên n ≥ 1 do đó ta có: n + 2 ≥ 3
.
Mặt khác n ∈ ℕ* nên n > 0 do đó khi đó un < 6.
Suy ra nên dãy số bị chặn trên và chặn dưới.
Vì vậy dãy số (un) bị chặn.
Bài tập 5: Cho dãy số
Chứng minh
Trả lời:
Ta có
Vậy dãy số
Suy ra dãy số
Bài tập 6: Cho dãy số (un) với . Tìm các giá trị của a để:
a) (un) là dãy số tăng;
b) (un) là dãy số giảm.
Trả lời:
Ta có:
Xét hiệu:
Vì n ∈ ℕ* nên (n + 1)(n + 2) > 0 nên dấu của hiệu un+1 – un phụ thuộc vào dấu của biểu thức a – 2.
a) Để (un) là dãy số tăng thì un+1 – un > 0 nên a – 2 > 0 ⇔ a > 2.
b) Để (un) là dãy số giảm thì un+1 – un < 0 nên a – 2 < 0 ⇔ a < 2.
Bài tập 7: Trên lưới ô vuông, mỗi ô cạnh 1 đơn vị, người ta vẽ 8 hình vuông và tô màu khác nhau như Hình 3. Tìm dãy số biểu diễn độ dài cạnh của 8 hình vuông đó từ nhỏ đến lớn. Có nhận xét gì về dãy số trên?
Trả lời:
Ta có dãy số