Giải SGK Toán 11 Chân trời sáng tạo Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian

Hoạt động khởi động: Môn học Hình học phẳng tìm hiểu tính chất của các hình cùng thuộc một mặt phẳng. Môn học Hình học không gian tìm hiểu tính chất của các hình trong không gian, những hình này có thể chứa những điểm không cùng thuộc một mặt phẳng. Hãy phân loại các hình sau thành hai nhóm hình khác nhau.

Hoạt động khởi động trang 88 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

Đặt tên các hình như sau:

Hoạt động khởi động trang 88 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Các hình trên được phân thành hai nhóm sau:

- Nhóm Hình học phẳng gồm: Hình 1, Hình 3, Hình 6, Hình 8.

- Nhóm Hình học không gian gồm: Hình 2, Hình 4, Hình 5, Hình 7.

1. Mặt phẳng trong không gian

Khám phá 1: Mặt bàn, mặt bảng cho ta hình ảnh của mặt phẳng. Hãy chỉ thêm các ví dụ khác về hình ảnh một phần của mặt phẳng.

Hoạt động khám phá 1 trang 88 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

- Một số hình ảnh một phần của mặt phẳng trong thực tế là: sàn nhà, mặt tường,…

Thực hành 1: 

a) Vẽ hình biểu diễn của một hình hộp chữ nhật

b) Quan sát Hình 4a và cho biết điểm nào thuộc, điểm nào không thuộc mặt phẳng (P)

c) Quan sát Hình 4b và cho biết điểm nào thuộc, điểm nào không thuộc mặt phẳng (Q)

Thực hành 1 trang 89 Toán 11 tập 1 Chân trời

Trả lời:

a) 

Thực hành 1 trang 89 Toán 11 tập 1 Chân trời

b) Điểm thuộc mặt phẳng (P) là: A'; B'; C'; D'

Điểm không thuộc mặt phẳng (P) là: A; B; C; D

c) Điểm thuộc mặt phẳng (Q) là: A; C; D

Điểm không thuộc mặt phẳng (Q) là: B


2. Các tính chất được thừa nhận của hình học không gian


Khám phá 2: Quan sát Hình 5 và cho biết muốn gác một cây sào tập nhảy cao, người ta cần dựa nó vào mấy điểm trên hai cọc đỡ.

Hoạt động khám phá 2 trang 89 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

- Từ hình ảnh ta thấy muốn gác một cây sao tập nhảy cao, người ta cần dựa nó vào một điểm trên mỗi cọc đỡ.

Thực hành 2: Cho bốn điểm A, B, C, D phân biệt, trong đó không có ba điểm nào thẳng hàng. Có bao nhiêu đường thẳng đi qua hai trong bốn điểm đã cho.

Trả lời:

Thực hành 2 trang 90 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Có tất cả 6 đường thẳng đi qua 2 trong 4 điểm đã cho: AB, AC, AD, BD, BC, CD.

Khám phá 3: Quan sát Hình 7 và cho biết giá đỡ máy ảnh tiếp đất tại mấy điểm. Tại sao giá đỡ máy ảnh thường có ba chân?

Khám phá 3 trang 90 Toán 11 tập 1 Chân trời

Trả lời:

- Giá đỡ máy ảnh tiếp đất tại 3 điểm.

- Giá đỡ máy ảnh có 3 chân để giữ được cân bằng và đỡ được máy ảnh bên trên.


Thực hành 3: Có bao nhiêu mặt phẳng đi qua ba đỉnh của tam giác MNP?

Trả lời:

- Ba đỉnh của tam giác MNP không thẳng hàng nên chỉ có một mặt phẳng đi qua ba đỉnh của tam giác.

Khám phá 4: Quan sát Hình 10 và cho biết thợ mộc kiểm tra mặt bàn có phẳng hay không bằng một cây thước thẳng như thế nào?

Trả lời:

Người thợ mộc kiểm tra mặt bàn phẳng bằng cách sau:

- Đặt thước vào mặt bàn và đẩy di động;

- Kiểm tra xem thước có khít với mặt bàn không, nếu thước khít với mặt bàn thì mặt bàn phẳng, còn thước bị chênh so với mặt bàn thì mặt bàn không phẳng.

Thực hành 4: Cho mặt phẳng (Q) đi qua bốn đỉnh của tứ giác ABCD. Các điểm nằm trên các đường chéo của tứ giác ABCD có thuộc mặt phẳng (Q) không? Giải thích

Trả lời:

- Áp dụng tính chất 2, ta có mặt phẳng (Q) là mặt phẳng duy nhất đi qua bốn điểm A, B, C, D.

- Áp dụng tính chất 3, ta có mọi điểm nằm trên đường chéo AC và BD đều thuộc mặt phẳng (Q)


bốn đỉnh A, B, C, D của cái bánh giò có cùng nằm trên một mặt phẳng hay không?

Hoạt động khám phá 5 trang 91 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

- Bốn đỉnh A, B, C, D của cái bánh giò không cùng nằm trên một mặt phẳng.

Thực hành 5: Cho tam giác MNP và cho điểm O không thuộc mặt phẳng chứa ba điểm M, N, P. Tìm các mặt phẳng phân biệt được xác định từ bốn điểm M, N, P, O

Trả lời:

- Ta xác định được 4 mặt phẳng phân biệt là: (MNP); (MNO); (NPO); (MPO)

Khám phá 6: Quan sát Hình 14 và mô tả phần giao nhau của hai bức tường.

Hoạt động khám phá 6 trang 92 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

- Phần giao nhau của hai bức tường là một đường thẳng.

Thực hành 6: Cho A, B, C là ba điểm chung của hai mặt phẳng phân biệt (α) và (β) (Hình 16). Chứng mình A, B, C thẳng hàng.

Thực hành 6 trang 92 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

- Ta có, A, B, C là ba điểm chung của hai mặt phẳng (α) và (β). Suy ra A, B, C cùng nằm trên giao tuyến của hai mặt phẳng (α) và (β)

=> Hay A, B, C thẳng hàng


Khám phá 7: Trong mặt phẳng (P), cho tam giác ABC có M, N lần lượt là trung điểm của các đoạn thẳng AB, AC (Hình 17). Tính tỉ số MNBC.

Hoạt động khám phá 7 trang 92 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

Xét tam giác ABC, có:

M là trung điểm của AB;

N là trung điểm của AC

Do đó MN là đường trung bình của tam giác ABC

MNBC=12.

Vận dụng 1: Tại sao muốn cánh cửa đóng mở được êm thì các điểm gắn bản lề A, B, C của cánh cửa và mặt tường (Hình 19) phải cùng nằm trên một đường thẳng?

Vận dụng 1 trang 93 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

- Do mặt tường và cánh cửa là hai mặt phẳng phân biệt nên theo tính chất 5, các điểm trên bản lề phải nằm trên một đường thẳng để mặt phẳng cánh cửa tiếp xúc với mặt phẳng tường qua 1 đường thẳng (chính là giao tuyến của mặt phẳng tường và mặt phẳng cánh cửa). Khi đó cánh cửa đóng mở được êm hơn.

3. Cách xác định mặt phẳng

Khám phá 8: Cho đường thẳng a và điểm A không nằm trên a. Trên a lấy hai điểm B, C. Đường thẳng a có nằm trong mặt phẳng (ABC) không? Giải thích.

Hoạt động khám phá 8 trang 94 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

- Qua ba điểm A, B, C không thẳng hàng ta có một mặt phẳng duy nhất đi qua 3 điểm này là (ABC).

- Qua hai điểm B và C ta vẽ được duy nhất một đường thẳng a đi qua hai điểm này .

=> Vì B và C thuộc (ABC) nên đường thẳng thẳng a cũng thuộc (ABC).

Khám phá 9: Hai đường thẳng phân biệt a và b cắt nhau tại O. Trên a,b lấy lần lượt hai điểm M, N khác O. Gọi (P) là mặt phẳng đi qua ba điểm M, N, O (Hình 25). Mặt phẳng (P) có chứa cả hai đường thẳng a và b không? Giải thích.

Khám phá 9 trang 95 Toán 11 tập 1 Chân trời

Trả lời:

- Với đường thẳng a và điểm N không thuộc a, ta xác định được duy nhất mặt phẳng (P) chứa a và N

- Với đường thẳng b và điểm M không thuộc b, ta xác định được duy nhất mặt phẳng (P) chứa b và M

=> Suy ra mặt phẳng đi qua 3 điểm M, N, O là (P) chứa cả 2 đường thẳng a và b.


Thực hành 7: Cho hai đường thẳng a và b cắt nhau tại O và điểm M không thuộc mặt phẳng (a, b).

a) Tìm giao tuyến của hai mặt phẳng (M, a) và (M, b).

b) Lấy A, B lần lượt là hai điểm trên a, b và khác với điểm O. Tìm giao tuyến của (MAB) và mp(a, b).

c) Lấy điểm A’ trên đoạn MA và điểm B’ trên đoạn MB sao cho đường thẳng A’B’ cắt mp(a, b) tại C. Chứng minh ba điểm A, B, C thẳng hàng.

Trả lời:

a) Ta có hình vẽ sau:

Thực hành 7 trang 95 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Ta có:

M ∈ mp(M, a) và M ∈ mp(M, b) nên M ∈ (M, a) ∩ (M, b).

O là giao điểm của hai đường thẳng a và b, mà a ⊂ mp(M, a) và b ⊂ mp(M, b) nên O ∈ (M, a) ∩ (M, b).

Vậy giao tuyến của hai mặt phẳng (M, a) và (M, b) là đường thẳng qua hai điểm M và O.

b)

Thực hành 7 trang 95 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Ta có: A ∈ (MAB) và A ∈ a ⊂ mp(a, b) nên A ∈ (MAB) ∩ mp(a, b).

Ta lại có: B ∈ (MAB) và B ∈ b ⊂ mp(a, b) nên B ∈ (MAB) ∩ mp(a, b).

Vậy giao tuyến của (MAB) và mp(a, b) là đường thẳng AB.

c)

Thực hành 7 trang 95 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Ta có (MA’B’) cũng là mặt phẳng (MAB)

Mà (MAB) giao mp(a, b) là đường thẳng AB nên điểm C cũng thuộc đường thẳng này do đó ba điểm A, B, C thẳng hàng.

Vận dụng 2: Giải thích tại sao ghế bốn chân có thể bị khập khiễng còn ghế ba chân thì không.

Vận dụng 2 trang 95 Toán 11 tập 1 Chân trời

Trả lời:

- Với ghế 4 chân, nếu 4 điểm tại chân ghế không thuộc một mặt phẳng thì ghế có thể bị khập khiễng.

- Với ghế 3 chân, ta chỉ xác định được duy nhất một mặt phẳng đi qua 3 điểm thuộc chân ghế nên ghế ba chân không thể khập khiễng.

Vận dụng 3: Trong xây dựng, người ta thường dùng máy quét tia laser để kẻ các đường thẳng trên tường hoặc sàn nhà. Tìm giao tuyến của mặt phẳng tạo bởi các tia laser OA và OB của các mặt tường trong Hình 29.

Vận dụng 3 trang 95 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

- Giao tuyến của mặt phẳng tạo bởi tia laser OA và OB với hai mặt tường lần lượt là AC và BC.

4. Hình chóp và hình tứ diện

Khám phá 10: 

a) Các công trình kiến trúc, đồ vật trong Hình 30 có mặt bên là hình gì

Khám phá 10 trang 96 Toán 11 tập 1 Chân trời

b) Tìm điểm giống nhau của các hình trong Hình 31.

Khám phá 10 trang 96 Toán 11 tập 1 Chân trời

Trả lời:

a) Hình tam giác

b) Các hình trong Hình 31 có điểm giống nhau là các mặt bên là hình tam giác


Khám phá 11: Trong Hình 34, hình chóp nào có số mặt ít nhất?

Hoạt động khám phá 11 trang 97 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

Hình chóp a) có 4 mặt.

Hình chóp b) có 5 mặt.

Hình chóp c) có 6 mặt.

Hình chóp d) có 7 mặt.

Vậy hình a) có số mặt ít nhất.

Thực hành 8: Cho tứ diện SABC. Gọi H, K lần lượt là hai điểm trên hai cạnh SA< SC (HA,A;KS,C) sao cho HK không song song với AC. Gọi I là trung điểm của BC (Hình 38)

a) Tìm giao điểm của đường thẳng HK và mặt phẳng (ABC)

b) Tìm giao tuyến của các mặt phẳng (SAI) và (ABK); (SAI) và (BCH)

Thực hành 8 trang 98 Toán 11 tập 1 Chân trời

Trả lời:

a) Trong mặt phẳng (SAC), kéo dài HK cắt AC tại E.

Ta có EAC suy ra E(SAC)

Vậy giao điểm của đường thẳng HK và mặt phẳng (SAC) là E 

Thực hành 8 trang 98 Toán 11 tập 1 Chân trời

b) Ta có BK cắt SI tại M. A và M là điểm chung của hai mặt phẳng (SAI) và (ABK) nên giao tuyến của (SAI) và (ABK) là AM

Ta có H và I là điểm chung của hai mặt phẳng (SAI) và (BCH) nên giao tuyến của (SAI) và (BCH) là HI

Thực hành 8 trang 98 Toán 11 tập 1 Chân trời

Vận dụng 4: Cho hình chóp S.ABCD. Trên các cạnh bên của hình chóp lấy lần lượt các điểm A’, B’, C’, D’. Cho biết AC cắt BD tại O, A’C’ cắt B’D’ tại O’, AB cắt CD tại E và A’B’ cắt D’C’ tại E’ (Hình 39). Chứng minh rằng:

Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) S, O’, O thẳng hàng;

b) S, E’, E thẳng hàng.

Trả lời:

Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) +) Ta có Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Ta lại có: O là giao điểm của AC và BD nên

Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Suy ra (SAC) ∩ (SBD) = SO.

+) Ta có Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Ta lại có: O’ là giao điểm của A’C’ và B’D’ nên

Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Suy ra (SA'C') ∩ (SB'D') = SO'.

+) Mặt khác mặt phẳng (SA’C’) cũng chính là mặt phẳng (SAC), mặt phẳng (SB’D’) cũng chính là mặt phẳng (SBD) do đó SO’ trùng SO. Vì vậy S, O’, O thẳng hàng.

b) +) Ta có Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Ta lại có: E là giao điểm của AB và DC nên

Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Suy ra (SAB) ∩ (SDC) = SE.

+) Ta có Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Ta lại có: E’ là giao điểm của D’C’ và A’B’ nên

Vận dụng 4 trang 98 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Suy ra (SB'C') ∩ (SD'C') = SE'.

+) Mặt khác mặt phẳng (SB’C’) cũng chính là mặt phẳng (SBC), mặt phẳng (SD’C’) cũng chính là mặt phẳng (SDC) do đó SE’ trùng SE. Vì vậy S, E’, E thẳng hàng.

Vận dụng 5: Nếu các tạp lập tứ diện đều SABC từ tam giác đều SS'S" theo gợi ý ở Hình 40

Vận dụng 5 trang 98 Toán 11 tập 1 Chân trời

Trả lời:

- Gọi A, B, C là 3 trung điểm của 3 cạnh trong tam giác đều SS'S"

- Gấp các đường AB, BC, CA sao cho các đỉnh S, S', S'' trùng nhau

=> Ta được tứ diện đều SABC


Bài tập


Bài tập 1: Cho hình chóp S.ABCD, gọi O là giao điểm của AC và BD. Lấy M, N lần lượt thuộc các cạnh SA, SC.

a) Chứng minh đường thẳng MN nằm trong mặt phẳng (SAC).

b) Chứng minh O là điểm chung của hai mặt phẳng (SAC) và (SBD).

Trả lời:

Bài 1 trang 99 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Ta có: M ∈ SA ⊂ (SAC);

N ∈ SC ⊂ (SAC);

⇒ MN ⊂ (SAC).

b) Ta có O là giao điểm của AC và BD

O ∈ AC ⊂ (SAC)

O ∈ BD ⊂ (SBD).

⇒ O ∈ (SAC) ∩ (SBD).

Bài tập 2: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm của SC.

a) Tìm giao điểm I của đường thẳng AM và mặt phẳng (SBD). Chứng minh IA = 2IM.

b) Tìm giao điểm E của đường thẳng SD và mặt phẳng (ABM).

c) Gọi N là một điểm tuỳ ý trên cạnh AB. Tìm giao điểm của đường thẳng MN và mặt phẳng (SBD)

Trả lời:

a)

 Bài tập 2 trang 99 Toán 11 tập 1 Chân trời

Gọi I là giao điểm của SO và AM. Ta có: IAM

Do ISO;SO(SBD) nên I(SBD)

Vậy I giao điểm của AM và (SBD)

Trong tam giác SAC, ta có: M là trung điểm của SC, O là trung điểm của AC nên SO cắt AM tại I là trọng tâm của tam giác SAC

Suy ra AI=23AM hay AI=2IM

b) Trên mặt phẳng (SCD) kẻ một đường thẳng song song với AB cắt SD tại E.

Bài tập 2 trang 99 Toán 11 tập 1 Chân trời

Do ME//AB nên A,B,M,E cùng thuộc một mặt phẳng, hay E(ABM)

Vậy E là giao của (ABM) và SD

c) 

Bài tập 2 trang 99 Toán 11 tập 1 Chân trời

Trong mặt phẳng (ABCD), gọi NC cắt BD tại P. 

Ta có S và P là hai điểm chung của hai mặt phẳng (SNC) và (SBD) nên SP là giao tuyến của (SNC) và (SBD).

Trong mặt phẳng (SNC), gọi MN cắt SP tại Q. 

Do SP(SBD) nên Q(SBQ)

Vậy giao điểm của MN và (SBD) là Q


Bài tập 3: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi O là giao điểm của AC và BD; M và N lần lượt là trung điểm của SB và SD; P thuộc đoạn SC và không là trung điểm của SC.

a) Tìm giao điểm E của đường thẳng SO và mặt phẳng (MNP).

b) Tìm giao điểm Q của đường thẳng SA và mặt phẳng (MNP).

c) Gọi I, J, K lần lượt là giao điểm của QM và AB, QP và AC, QN và AD. Chứng minh I, J, K thẳng hàng.

Trả lời:

a) Gọi E là giao điểm của SO và MN

Mà MN ⊂ (MNP)

Suy ra SO ∩ (MNP) = {E}.

Bài 3 trang 99 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

b)

Gọi Q là giao điểm của PE và SA

Mà PE ⊂ (MNP)

Suy ra SA ∩ (MNP) = {Q}.

Bài 3 trang 99 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

c)

Ta có: QM ∩ AB = {I};

Mà QM ⊂ (QMN), AB ⊂ (ABCD)

Suy ra I ∈ (QMN) ∩ (ABC) (1)

Ta lại có: QN ∩ AD = {K}

Mà QN ⊂ (QMN), AD ⊂ (ABCD)

Suy ra K ∈ (QMN) ∩ (ABCD ) (2)

Từ (1) và (2) suy ra (QMN) ∩ (ABCD ) = {IM}.

Mặt khác, ta có: QE ∩ AC = {J}

Mà QE ⊂ (QMN), AC ⊂ (ABCD)

Suy ra J ∈ (QMN) ∩ (ABCD )

Do đó J thuộc đường thẳng IM.

Bài 3 trang 99 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Bài tập 4: Cho tứ diện ABCD. Gọi E, F, G lần lượt là ba điểm trên ba cạnh AB, AC, BD sao cho EF cắt BC tại I (IC), EG cắt AD tại H (HD)

a) Tìm giao tuyến của các mặt phẳng (EFG) và (BCD); (EFG) và (ACD)

b) Chứng minh ba đường thẳng CD, IG, HF cùng đi qua một điểm

Trả lời:

a) 

Bài tập 4 trang 99 Toán 11 tập 1 Chân trời

Ta có I và G là hai điểm chung của mặt phẳng (EFG) và (BCD) nên giao tuyến của (EFG) và (BCD) là GI

Gọi M là giao điểm của GI và CD. CD(ACD) nên M(ACD)

Ta có M và F là điểm chung của mặt phẳng (EFG) và (ACD) nên giao tuyến của (EFG) và (ACD) là MF

b) Ta có HAD,AD(ACD) nên H(ACD)

HEG;EG(EFG) nên H(EFG)

Suy ra H là giao điểm của (EFG) và (ACD) nên H nằm trên giao tuyến của (EFG) và (ACD): HFM.

Hay HF đi qua M.

Do đó, CD, IG, HF cùng đi qua điểm M.


Bài tập 5: Thước laser phát tia laser, khi tia này quay sẽ tạo ra mặt phẳng ánh sáng (Hình 41). Giải thích tại sao các thước kẻ laser lại giúp người thợ xây dựng được đường thẳng trên tường hoặc sàn nhà.

Bài 5 trang 99 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

- Do tia laser quay sẽ tạo ra một mặt phẳng, mặt phẳng này giao với mặt phẳng tường hoặc sàn nhà tạo thành một đường thẳng. Do đó có thể giúp người thợ kẻ được đường thẳng trên tường hoặc sàn nhà.