Giải SGK Toán 11 Chân trời sáng tạo Bài 1: Góc lượng giác

Hoạt động khởi động: Mỗi hình dưới đây thể hiện chuyển động quay của một điểm trên bánh lái tàu từ vị trí A đến vị trí B. Các chuyển động này có điểm nào giống nhau, điểm nào khác nhau?

Hoạt động khởi động trang 7 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

Sau bài học này ta sẽ trả lời được như sau:

Các chuyển động này có:

+) Điểm chung là: Đều chuyển động quay từ điểm A đến điểm B.

+) Điểm khác là: Góc lượng giác.

1. Góc lượng giác

Khám phá 1: Một chiếc bánh lái tàu có thể quay theo cả hai chiều. Trong Hình 1 và Hình 2, lúc đầu thanh OM ở vị trí OA.

hay dấu ? bằng số đo thích hợp Thay dấu ? bằng số đo thích hợp.

a) Khi quay bánh lái ngược chiều kim đồng hồ (Hình 1), cứ mỗi giây, bánh lái quay một góc 60o. Bảng dưới đây cho ta góc quay α của thanh OM sau t giây kể từ lúc bắt đầu quay. Thay dấu ? bằng số đo thích hợp.


b) Nếu bánh lái được quay theo chiều ngược lại, nghĩa là quay cùng chiều kim đồng hồ (Hình 2) với cùng tốc độ như trên, người ta ghi -60o để chỉ góc mà thanh OM quay được sau mỗi giây. Bảng dưới đây cho ta góc quay α của thanh OM sau giây kể từ lúc bắt đầu quay. Thay dấu ? bằng số đo thích hợp.

Trả lời:


Thực hành 1: Cho MON^=60°. Xác định số đo của các góc lượng giác được biểu diễn trong Hình 6 và viết công thức tổng quát của số đo góc lượng giác (OM, ON).

Thực hành 1 trang 9 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

Số đo góc lượng giác (OM, ON) trong Hình 6a là 60°.

Số đo góc lượng giác (OM, ON) trong Hình 6b là 2.360° + 60° = 780°.

Số đo góc lượng giác (OM, ON) trong Hình 6c là – (360° – 60°) = –300°.

Vận dụng 1: Trong các khoảng thời gian từ 0 giờ đến 2 giờ 15 phút, kim phút quét một góc lượng giác là bao nhiêu độ?

Trả lời:

- Kim phút quét một góc là: 2. (-360o) + (-90o) = -810o

Khám phá 2: Cho Hình 7:

Hoạt động khám phá 2 trang 9 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Xác định số đo các góc lượng giác (Oa, Ob), (Ob, Oc) và (Oa, Oc).

b) Nhận xét về mối liên hệ giữa ba số đo góc này.

Trả lời:

a) Số đo của góc lượng giác (Oa, Ob) có tia đầu là Oa và tia cuối là Ob là 135°.

Số đo của góc lượng giác (Ob, Oc) có tia đầu là Ob và tia cuối là Oc là – 80°.

Ta có: aOc^=aOb^bOc^=135°80°=55°.

Khi đó số đo của góc lượng giác (Oa, Oc) có tia đầu là Oa và tia cuối là Oc là 55° + 360° = 415°.

b) Ta có: 135° + (– 80°) = 415° – 360°.

Vậy (Oa, Ob) + (Ob, Oc) = (Oa, Oc) – 360°.

Vận dụng 2: Trong Hình 8, chiếc quạt có 3 cánh được phân bố đều nhau. Viết công thức tổng quát số đo của góc lượng giác (Ox, ON) và (Ox, OP).

Viết công thức tổng quát số đo của góc lượng giác (Ox, ON) và (Ox, OP)

Trả lời:

(Ox, ON) = 70o+k.360o

(Ox; OP) = 190o+k.360o


2. Đơn vị radian


Khám phá 3: Vẽ đường tròn tâm O bán kính R bất kì. Dùng một đoạn dây mềm đo bán kính và đánh dấu được một cung Hoạt động khám phá 3 trang 10 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 có độ dài đúng bằng R (Hình 9). Đo và cho biết AOB^ có số đo bằng bao nhiêu độ.

Hoạt động khám phá 3 trang 10 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

Hoạt động khám phá 3 trang 10 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Tiến hành đo góc AOB^ ta được AOB^=58°.

Thực hành 2: Hoàn thành bảng chuyển đổi đơn vị đo của các góc sau đây:


Trả lời:


3. Đường tròn lượng giác

Khám phá 4: Trong mặt phẳng tọa độ Oxy, vẽ đường tròn tâm O bán kính bằng 1 và điểm A(1; 0).

a) Cho điểm B(0; 1). Số đo góc lượng giác (OA, OB) bằng bao nhiêu radian?

b) Xác định các điểm A’ và B’ trên đường tròn sao cho các góc lượng giác (OA, OA’) và (OA, OB’) có số đo lần lượt là π và π2.

Trả lời:

Ta có hình vẽ:

Hoạt động khám phá 4 trang 11 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Ta có: Số đo góc lượng giác (OA, OB) bằng 90°.

b) Điểm A’ là điểm nằm trên đường tròn lượng giác thỏa mãn (OA, OA’) bằng π. Khi đó ta có hình vẽ:

Hoạt động khám phá 4 trang 11 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Điểm B’ là điểm nằm trên đường tròn lượng giác thỏa mãn (OA, OB’) bằng π2. Khi đó ta có hình vẽ:

Hoạt động khám phá 4 trang 11 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Thực hành 3: Biểu diễn trên đường tròn lượng giác các góc lượng giác có số đo là:

a) -1485o

b) 19π4

Trả lời:

a) Ta có -1485o = -45o + (-4).360o. Vậy điểm biểu diễn góc lượng giác có số đo -1485o là điểm M trên phần đường tròn lượng giác thuộc góc phần tư thứ IV sao cho AOM^=45o\widehat{AOM}=45^{o}

b) Ta có 19π4 = 3π4 + 2.2π. Vậy điểm biểu diễn góc lượng giác có số đo 19π4 là điểm N trên phần đường tròn lượng giác thuộc góc phần tư thứ II sao cho AON^=3π4\widehat{AON}=\frac{3\pi}{4}AON^\widehat{AON}

Bài tập


Bài tập 1: Đổi số đo của các góc dưới đây sang radian:

a) 38°;

b) – 115°;

c) 3πο.

Trả lời:

a) Ta có: 38° = π.38180=19π90 rad;

b) – 115° = π.115180=23π36 rad;

c) 3πο=π.3π180=160 rad.

Bài tập 2: Đổi số đo của các góc sau đây sang độ:

a) π12

b) -5

c) 13π9

Trả lời:

π12 = 15o

-5 = -286,5o

13π9 = 260o


Bài tập 3: Biểu diễn các góc lượng giác sau trên đường tròn lượng giác:

a) 17π3;

b) 13π4;

c) – 765°.

Trả lời:

a) Ta có: 17π3=2.2ππ2π3

Vì vậy điểm biếu diễn góc lượng giác có số đo 17π3 là điểm nằm trên phần đường tròn lượng giác thuộc góc phần tư thứ I sao cho A'OM^=2π3 hay A'OM^=120°.

Biểu diễn góc này trên đường tròn lượng giác ta được:

Bài 3 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

b) Ta có: 13π4=2π+π+π4

Biểu diễn góc này trên đường tròn lượng giác ta được:

Bài 3 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

c) Ta có: – 765° = (– 2).360° – 45°

Biểu diễn góc này trên đường tròn lượng giác ta được:

Bài 3 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Bài tập 4Góc lượng giác 31π7 có cùng điểm biểu diễn trên đường tròn lượng giác với góc lượng giác nào sau đây?

3π710π725π7.

Trả lời:

Ta có: 

31π7=3π7+2.2π

25π7=3π72.2π

Vậy góc lượng giác 31π7 có cùng điểm biểu diễn với góc lượng giác 3π7 và 25π7

Bài tập 5: Viết các công thức số đo tổng quát của các góc lượng giác (OA, OM) và (OA, ON) trong Hình 14.

Bài 5 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

Công thức số đo tổng quát của các góc lượng giác (OA, OM) là:

(OA, OM) = 120° + k360° (k ∈ ℤ).

Công thức số đo tổng quát của các góc lượng giác (OA, ON) là:

(OA, ON) = – 75° + k360° (k ∈ ℤ).

Bài tập 6: Viết công thức số đo tổng quát của góc lượng giác (Ox, ON).

Viết công thức số đo tổng quát của góc lượng giác (Ox, ON)

Trả lời:

(Ox, ON) = 99o+k.360o

Bài tập 7: Trên đường tròn lượng giác hãy biểu diễn các góc lượng giác có số đo có dạng là:

a) π2+kπk;

b) kπ4k.

Trả lời:

a) Với k = 0 thì có góc lượng giác có số đo góc là π2, được biểu diễn bởi điểm M;

Với k = 1 thì có góc lượng giác có số đo góc là π2+π=3π2, được biểu diễn bởi điểm N;

Với k = 2 thì có góc lượng giác có số đo góc là π2+2π nên cũng được biểu diễn bởi điểm M;

Với k = 3 thì có góc lượng giác có số đo góc là π2+3π=3π2+2π nên cũng được biểu diễn bởi điểm N.

Vậy với k chẵn thì các góc lượng giác có số đo dạng π2+kπk được biểu diễn bởi điểm M, với k lẻ thì các góc lượng giác có số đo dạng π2+kπk được biểu diễn bởi điểm N khi đó ta có hình vẽ sau:

Bài 7 trang 13 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

b) Với k = 0 thì có góc lượng giác có số đo góc là 0, được biểu diễn bởi điểm A;

Với k = 1 thì có góc lượng giác có số đo góc là π4, được biểu diễn bởi điểm M;

Với k = 2 thì có góc lượng giác có số đo góc là 2π4=π2 được biểu diễn bởi điểm B;

Với k = 3 thì có góc lượng giác có số đo góc là 3π4 được biểu diễn bởi điểm N;

Với k = 4 thì có góc lượng giác có số đo góc là 4π4=π được biểu diễn bởi điểm A’;

Với k = 5 thì có góc lượng giác có số đo góc là 5π4 được biểu diễn bởi điểm M’;

Với k = 6 thì có góc lượng giác có số đo góc là 6π4=3π2 được biểu diễn bởi điểm B’;

Với k = 7 thì có góc lượng giác có số đo góc là 7π4 được biểu diễn bởi điểm N’;

Với k = 8 thì có góc lượng giác có số đo góc là 8π4=2π+0 nên được biểu diễn bởi điểm A;

Vậy các góc lượng giác có số đo dạng π2+kπk được biểu diễn bởi các điểm A, M, B, N, A’, M’, B’, N’. Khi đó ta có hình vẽ sau:

Bài 7 trang 13 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Bài tập 8: Vị trí các điểm B, C, D trên cánh quạt động cơ máy bay trong Hình 16 có thể được biểu diễn cho các góc lượng giác nào sau đây?

π2+k2π3(kZ)π6+k2π3(kZ)π3+kπ3(kZ)

Trả lời:

- Điểm B, C, D biểu diễn cho góc lượng giác π2+k2π3(kZ)

Bài tập 9: Hải lí là một đơn vị chiều dài hàng hải, được tính bằng độ dài một cung chắn một góc α=160ο của đường kinh tuyến (Hình 17). Đổi số đo α sang radian và cho biết 1 hải lí bằng khoảng bao nhiêu ki lô mét, biết bán kính trung bình của Trái Đất là 6 371 km. Làm tròn kết quả hàng phần trăm.

Bài 9 trang 13 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời:

Ta có: Bài 9 trang 13 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Độ dài cung chắn góc α là: α.R = π10800.6 371  1,85 km.

Vậy 1 hải lí bằng 1,85 km.