Bài tập 1: Cho tam giác ABC. Lấy điểm M trên cạnh AC kéo dài (Hình 1). Mệnh đề nào sau đây là mệnh đề sai?
A. M ∈ (ABC);
B. C ∈ (ABM);
C. A ∈ (MBC);
D. B ∈ (ACM).
Đáp án: D
Giải thích: Vì A,C, M thẳng hàng nên (ACM) không phải mặt phẳng
Bài tập 2: Cho tứ diện ABCD với I và J lần lượt là trung điểm các cạnh AB và CD. Mệnh đề nào sau đây đúng?
A. Bốn điểm I, J, B, C đồng phẳng;
B. Bốn điểm I, J, A, C đồng phẳng;
C. Bốn điểm I, J, B, D đồng phẳng;
D. Bốn điểm I, J, C, D đồng phẳng.
Đáp án: D
Giải thích:
Bài tập 3: Cho hình chóp S.ABCD có AC cắt BD tại M, AB cắt CD tại N. Trong các đường thẳng sau đây, đường nào là giao tuyến của (SAC) và (SBD)?
A. SM
B. SN
C. SB
D. SC
Đáp án: A
Giải thích:
Bài tập 4: Cho hình chóp SABCD có đáy ABCD là hình bình hành. Gọi I, J, E, F lần lượt là trung điểm SA, SB, SC, SD. Trong các đường thẳng sau, đường nào không song song với IJ?
A. EF;
B. DC;
C. AD;
D. AB.
Đáp án: C
Giải thích:
+) Trong tam giác SAB, có: IJ // AB (IJ là đường trung bình của tam giác)
Ta lại có AB // DC nên IJ // DC
+) Trong tam giác SDC có EF // DC (EF là đường trung bình của tam giác)
+) AD với IJ là hai đường thẳng chéo nhau.
Bài tập 5: Cho hình bình hành ABCD và một điểm S không nằm trong mặt phẳng (ABCD). Giao tuyến của hai mặt phẳng (SAB) và (SCD) là một đường thẳng song song với đường thẳng nào sau đây?
A. AB
B. AC
C. BC
D. SA
Đáp án: A
Giải thích:
Bài tập 6: Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng 10. M là điểm trên SA sao cho . Một mặt phẳng (α) đi qua M song song với AB và CD, cắt hình chóp theo một tứ giác có diện tích là:
A. ;
B. ;
C. ;
D. .
Đáp án: A
Giải thích:
+) Trong mặt phẳng (SAB), từ M kẻ đường thẳng song song với AB cắt SB tại N.
Suy ra giao tuyến của (α) với (SAB) là MN.
+) Trong mặt phẳng (SBC), từ N kẻ đường thẳng song song với BC // AD cắt SC tại P.
Suy ra giao tuyến của (α) với (SBC) là NP.
+) Trong mặt phẳng (SAD), từ điểm M kẻ đường thẳng song song với AD cắt SD tại Q.
Suy ra giao tuyến của (α) với (SAD) là MQ.
Do đó mặt phẳng (MNPQ) là mặt phẳng (α) cần dựng.
Ta có MNPQ là hình vuông có cạnh bằng cạnh hình vuông và bằng .
Diện tích của MNPQ là: (đvdt).
Bài tập 7: Quan hệ song song không gian có tính chất nào trong cách tính chất sau?
A. Nếu hai mặt phẳng (P) và (Q) song song với nhau thì mọi đường thẳng nằm trong (P) đều song song với (Q)
B. Nếu hai mặt phẳng (P) và (Q) song song với nhau thì mọi đường thẳng nằm trong (P) đều song song với mọi đường thẳng nằm trong (Q)
C. Nếu hai đường thẳng song song với nhau lần lượt nằm trong hai mặt phẳng phân biệt (P) và (Q) thì (P) và (Q) song song với nhau
D. Qua một điểm nằm ngoài mặt phẳng cho trước ta vẽ được một và chỉ một đường thẳng song song với mặt phẳng cho trước đó
Đáp án: A
Giải thích: Qua một điểm nằm ngoài mặt phắng cho trước ta vẽ được nhiều hơn một đường thẳng song song với mặt phẳng cho trước đó.
Bài tập 8: Cho hình lăng trụ ABC.A'B'C'. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, AA', A'C', BC. Ta có:
A. (MNP)//(BCA)
B. (MNQ)//(A'B'C')
C. (NQP)//(CAB)
D. (MPQ)//(ABA')
Đáp án: D
Giải thích:
Tam giác ABC có QM là đường trung bình nên QM//AB. Suy ra QM//(ABA')
Hình bình hành ACC'A' có MP là đường trung bình nên MP//AA'. Suy ra MP//(ABA')
Mà MP và QM cắt nhau nên (MPQ)//(ABA')
Bài tập 9: Cho hình hộp ABCD.A’B’C’D’. Gọi M và N lần lượt là trung điểm của AB và A’B’ và O là một điểm thuộc miền trong của mặt bên CC’D’D. Tìm giao tuyến của mặt phẳng (OMN) với các mặt của hình hộp.
Trả lời:
Trong mặt phẳng (CDD’C’), từ điểm O kẻ đường thẳng song song với MN cắt CD tại Q và C’D’ tại P. Suy ra mp(OMN) = mp(MNPQ). Khi đó:
+) Giao tuyến của (OMN) với (ABB’A’) là MN.
+) Giao tuyến của (OMN) với (A’B’C’D’) là NP.
+) Giao tuyến của (OMN) với (CC’D’D) là PQ.
+) Giao tuyến của (OMN) với (ABCD) là MQ.
Bài tập 10: Cho hình chóp S.ABCD với ABCD là hình thoi cạnh a, tam giác SAD đều. M là điểm trên cạnh AB,
a) Chứng minh rằng MNPQ là hình thang cân
b) Đặt AM = x, tính diện tích MNPQ theo a và x
Trả lời:
a) Do (SAB) cắt hai mặt phẳng
Do (SCD) cắt hai mặt phẳng
Do (ABCD) cắt hai mặt phẳng
Suy ra
Mà SA=SD nên QM = NP
Do (SBC) cắt hai mặt phẳng
Mà MN//BC nên MN//QP
Ta có MN//QP, MQ=NP
Nên MNPQ là hình thang cân
a) Gọi I là giao điểm của QM và NP. Suy ra I nằm trên giao tuyến của SAB và SCD.
Mà (SAB) và (SCD) giao nhau tại đường thẳng đi qua A và song song với AB và CD nên SI//AB//CD
Ta có: SI//ND, SD//NI nên SIND là hình bình hàng. Suy ra IN=SD
SI//AM, SA//IM nên SIMA là hình bình hành. Suy ra IM = SA
Mà MN = AD tam giác SAD đều nên tam giác IMN đều có cạnh là a
Do SI// AB nên
Suy ra
Vậy
Bài tập 11: Cho mặt phẳng (α) và hai đường thẳng chéo nhau a, b cắt (α) tại A và B. Gọi d là đường thẳng thay đổi luôn luôn song song với (α) và cắt a tại M, cắt b tại N. Qua điểm N dựng đường thẳng song song với a cắt (α) tại điểm C.
a) Tứ giác MNCA là hình gì?
b) Chứng minh rằng điểm C luôn luôn chạy trên một đường thẳng cố định.
c) Xác định vị trí của đường thẳng d để độ dài MN nhỏ nhất.
Trả lời:
a) Vì d // (α) nên phép chiếu song song của d trên mặt phẳng (α) là AC và d // AC hay MN // AC.
Mặt khác ta lại có AM // NC
Do đó tứ giác MNCA là hình bình hành.
b) C luôn chạy trên đường thẳng là hình chiếu của đường thẳng b trên mặt phẳng (α) theo phương chiếu (α).
d) Để độ dài MN nhỏ nhất thì đường thẳng d phải vuông góc với a và vuông góc với b.
Bài tập 12: Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng khác nhau. Lấy các điểm M, N lần lượt thuộc các đường chéo AC và BF sao cho MC =2MA; NF = 2NB. Qua M, N kẻ các đường thẳng song song với AB, cắt AD, AF lần lượt tại
a) MN//DE
b)
c)
Trả lời:
a) Gọi I là trung điểm của AB
Do
Do
Suy ra
Do đó MN//DE
b) Do
Do
Suy ra
Do đó
Suy ra
C) Ta có MN//DE nên MN//(DEF);
Vậy