Giải SGK Toán 7 Cánh diều Bài 2: Tập hợp R các số thực

Khởi động: Các số hữu tỉ và vô tỉ được gọi chung là số gì?

Lời giải:

- Các số hữu tỉ và vô tỉ được gọi chung là số thực. Tập hợp các số thực được kí hiệu là ℝ.

I. Số thực

Hoạt động 1:

a) Nếu hai ví dụ về số hữu tỉ.

b) Nêu hai ví dụ về số vô tỉ.

Lời giải:

a. Ví dụ về số hữu tỉ: 35; -0,6

b. Ví dụ về số vô tỉ: 3;π

Hoạt động 2:

a) Nêu biểu diễn thập phân của số hữu tỉ.

b) Nêu biểu diễn thập phân của số vô tỉ.

Lời giải:

a) Các số hữu tỉ được biểu diễn bằng các số thập phân hữu hạn hoặc vô hạn tuần hoàn.

b) Các số vô tỉ được biểu diễn bằng các số thập phân vô hạn không tuần hoàn.

II. Biểu diễn số thực trên trục số

Hoạt động 3: Biểu diễn các số hữu tỉ sau trên trục số: -12; 1; 1,25; 74.

Lời giải:


III. Đối số của một số thực

Hoạt động 4: Đọc kĩ nội dung sau:

Gọi A là điểm (nằm bên phải điểm gốc 0) biểu diễn số thực 2 trên trục số nằm ngang. Gọi B là điểm nằm bên trái điểm gốc 0 sao cho OA = OB (điểm O biểu diễn điểm gốc 0). Khi đó, điểm B biểu diễn một số thực, kí hiệu là -2 (Hình 6).

Hoạt động 4 trang 39 Toán 7 Tập 1 Cánh diều

Hai điểm biểu diễn các số thực 2 và -2 nằm về hai phía của điểm gốc 0 và cách đều điểm gốc 0.

Luyện tập, vận dụng 1: Tìm số đối của mỗi số sau: 29;0,5;3.

Lời giải:


IV. So sánh các số thực

Hoạt động 5:

a) So sánh hai số thập phân sau: –0,617 và –0,614.

b) Nêu quy tắc so sánh hai số thập phân hữu hạn.

Lời giải:

a) Vì –0,617 và –0,614 là hai số thập phân âm nên ta đi so sánh hai số đối của chúng là 0,617 và 0,614.

Ta thấy phần nguyên của hai số cần so sánh đều là 0 nên ta chuyển sang so sánh phần thập phân của chúng.

Ta thấy ở hàng phần mười và hàng phần trăm của hai số này giống nhau nên ta so sánh đến hàng phần nghìn. 

Vì 7 > 4 nên 0,617 > 0,614 do đó –0,617 < –0, 614.

b) Quy tắc so sánh hai số thập phân hữu hạn.

- Nếu hai số thập phân hữu hạn a, b đem so sánh là hai số thập phân dương thì ta đi so sánh phần nguyên của chúng. Nếu phần nguyên bằng nhau thì ta so sánh đến phần thập phân, bắt đầu từ hàng phần mười, nếu hàng phần mười bằng nhau thì ta so sánh đến hàng phần trăm…đến cùng một hàng nào đó, số thập phân nào có chữ số ở hàng tương ứng lớn hơn thì lớn hơn.

- Nếu hai số thập phân hữu hạn a, b đem so sánh có một số là số thập phân âm, một số là số thập phân dương thì số thập phân dương luôn lớn hơn số thập phân âm.

- Nếu hai số thập phân hữu hạn a, b đem so sánh là hai số thập phân âm thì ta so sánh hai số đối của chúng với nhau. Số nào có số đối lớn hơn thì nhỏ hơn.

Chú ý: Số thập phân âm luôn nhỏ hơn 0, số thập phân dương luôn lớn hơn 0.

Luyện tập, vận dụng 2: So sánh hai số thực sau: 

a) 1,(375) và 138;

b) –1,(27) và  –1,272.

Lời giải:


Bài tập

Bài tập 1: Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) Nếu a  thì a .

b) Nếu a  thì a .

c) Nếu a  thì a .

d) Nếu a  thì a .

Lời giải:

a) Nếu a ∈ ℤ thì a ∈ ℝ.

Nếu a ∈ ℤ tức a là số nguyên, mà mọi số nguyên đều là số thực, do đó a ∈ ℝ.

Vậy phát biểu a) đúng.

b) Nếu a ∈ ℚ thì a ∈ ℝ.

Nếu a ∈ ℚ tức a là số hữu tỉ, mà mọi số hữu tỉ đều là số thực a ∈ ℝ.

Vậy phát biểu b) đúng.

c) Nếu a ∈ ℝ thì a ∈ ℤ.

Nếu a ∈ ℝ tức a là số thực, mà không phải số thực nào cũng là số nguyên.

Chẳng hạn, 1,4 ∈ ℝ nhưng 1,4 ∉ ℤ.

Do đó phát biểu c) sai.

d) Nếu a ∈ ℝ thì a ∉ ℚ.

Nếu a ∈ ℝ tức a là số thực, mà không phải số thực nào cũng không phải là số hữu tỉ.

Chẳng hạn, 33 ∈ ℝ nhưng 33 ∈ ℚ

Do đó phát biểu d) sai.

Vậy, trong các phát biểu trên: Phát biểu đúng là a và b; Phát biểu sai là c và d.

Bài tập 2: Tìm số đối của mỗi số sau:835;56;187;1,15;21,54;7;5.

Lời giải:


Bài tập 3: So sánh:

a) –1,(81) và –1,812;

b) 217 và 2,142;

c) –48,075… và –48,275…;

d) 5 và 8

Lời giải:


Bài tập 4: Tìm chữ số thích hợp cho ?:

a) 5,02<5,?1;

b) 3,7?8>3,715;

c) 0,5?742<0,59653;

d) 1,4?<1,49.

Lời giải:

a) Vì 5,02<5,?1 nên 5,02 > 5,?1 .

Ta xét hai số 5,02 và 5,?1 thấy phần nguyên của hai số giống nhau nên để số 5,02 > 5,?1 thì ? phải điền số 0 vì nếu là số lớn hơn 0 thì không thỏa mãn.

b) Vì 3,7?8>3,715 nên 3,7?8 < 3,715. 

Ta xét hai số 3,7 8 và 3,715 thấy phần nguyên và hàng phần mười của hai số giống nhau; hàng phần nghìn có 8 > 5 nên hàng phần trăm của 3,7?8 phải nhỏ hơn hàng phần trăm của 3,715. 

Do đó ? chỉ có thể là 0.

c) Vì 0,5?742<0,59653 nên 0,5?(742) > 0,59653. 

Ta xét hai số 0,5?(742) và 0,59653 thấy phần nguyên và hàng phần mười của hai số giống nhau nếu ? nhỏ hơn 9 thì 0,5?(742) < 0,58653 nên ? chỉ có thể là 9.

d) Vì 1,4?<1,49 nên 1,4? > 1,49

Ta có: 1,4?=1,4?4?... ta thấy nếu ?< 9 thì 1,4?=1,4?4?...< 1,49 nên ? chỉ có thể là 9.

Bài tập 5:

a) Sắp xếp các số sau theo thứ tự tăng dần: –2,63…; 3,(3); –2,75…; 4,62.

b) Sắp xếp các số sau theo thứ tự giảm dần: 1,371…; 2,065; 2,056…; –0,078…;1,(37).

Lời giải:

a) Ta có:

-2,63…; -2,75 < 0;

3,(3); 4,62 > 0

Vì 2,63…<  2,75 nên -2,63…> -2,75

Mà 3,(3) < 4,62 nên -2,75 < -2,63…< 3,(3) < 4,62

=> Thứ tự sắp xếp là: -2,75 ; -2,63…; 3,(3) ; 4,62

b) Ta có:

-0,078 < 0;

1,371…; 2,065; 2,056…; 1,(37) > 0

Ta có: 1,(37) = 1,3737….

Ta được: 2,065 > 2,056…> 1,3737…. > 1,371…

Nên 2,065 > 2,056…> 1,3737…. > 1,371… > -0,078

=> Thứ tự sắp xếp là: 2,065 ; 2,056…; 1,3737…. ; 1,371… ; -0,078