Mở đầu: Hai con đường lớn a và b cắt nhau tạo thành một góc. Bên trong góc đó có một điểm dân cư O. Phải mở một con đường thẳng đi qua O cắt a tại A, cắt b tại B như thế nào để hai đoạn đường OA và OB bằng nhau (các con đường đều là đường thẳng) (H.3.27)?
Lời giải:
Gọi điểm giao nhau giữa hai đường thẳng a và b là điểm C.
– Vẽ tia Cx đi qua điểm O. Trên tia Cx lấy điểm D sao cho OC = OD (hay O là trung điểm của CD).
– Qua D vẽ tia Dy // a cắt tia b tại B; vẽ Dz // b cắt a tại A.
Khi đó tứ giác ACBD có AC // BD; AD // BC nên là hình bình hành.
Suy ra hai đường chéo AB, CD cắt nhau tại trung điểm của mỗi đường.
Mà O là trung điểm CD nên O là trung điểm của AB, hay OA = OB.
Vậy con đường đi qua O sao cho OA = OB được mở như trên.
1. Hình bình hành và tính chất
Hoạt động 1: Trong Hình 3.28, có một hình bình hành. Đó là hình nào? Em có thể giải thích tại sao không?
Lời giải:
- Hình c) là hình bình hành, bởi có các cặp cạnh song song
Thực hành 1: Vẽ hình bình hành, biết hai cạnh liên tiếp bằng 3 cm, 4 cm và góc xen giữa hai cạnh đó bằng 60°. Hãy mô tả cách vẽ và giải thích tại sao hình vẽ được là hình bình hành.
Lời giải:
Giả sử hình bình hành ABCD có AD = 3cm, AB = 4 cm và .
Cách vẽ:
– Vẽ cạnh AB = 4 cm.
– Vẽ . Trên tia Ax lấy điểm D sao cho AD = 3cm.
– Kẻ By // AD, Dz // AB. Hai tia By và Dz cắt nhau tại C, ta được hình bình hành ABCD.
Hình vẽ được là hình bình hành vì có hai cặp cạnh đối song song (AB // CD, AD // BC).
Hoạt động 2: Hãy nêu các tính chất của hình bình hành mà em đã biết.
Lời giải:
Các tính chất của hình bình hành mà em đã được học ở lớp 6:
– Các cạnh đối song song;
– Các cạnh đối bằng nhau;
– Các góc đối bằng nhau;
– Hai đường chéo cắt nhau tại trung điểm của mỗi đường.
Hoạt động 3: Cho hình bình hành ABCD (H.3.30).
a) Chứng minh ∆ABC = ∆CDA.
Từ đó suy ra AB = CD, AD = BC và .
b) Chứng minh ∆ABD = ∆CDB. Từ đó suy ra .
c) Gọi giao điểm của hai đường chéo AC, BD là O. Chứng minh ∆AOB = ∆COD. Từ đó suy ra OA = OC, OB = OD.
Lời giải:
Luyện tập 1: Cho tam giác ABC. Từ một điểm M tùy ý trên cạnh BC, kẻ đường thẳng song song với AB, cắt cạnh AC tại N và kẻ đường thẳng song song với AC, cắt AB tại P. Gọi I là trung điểm của đoạn NP. Chứng minh rằng I cũng là trung điểm của đoạn thẳng AM.
Lời giải:
Xét tứ giác APMN có:
• MN // AP (vì MN // AB)
• MP // AN (vì MP // AC)
Do đó tứ giác APMN là hình bình hành.
Suy ra hai đường chéo AM, NP cắt nhau tại trung điểm của mỗi đường.
Mà I là trung điểm của đoạn NP, nên I là trung điểm của đoạn thẳng AM.
Tranh luận: Tròn khẳng định: Hình thang cân có hai cạnh bên bằng nhau. Ngược lại, hình thang có hai cạnh bên bằng nhau thì nó là hình thang cân.
Vuông lại cho rằng: Tròn sai rồi!
Có trường hợp hình thang có hai cạnh bên bằng nhau nhưng nó không phải là hình thang cân.
Theo em, bạn nào đúng? Vì sao?
Lời giải:
Khẳng định của bạn Vuông là đúng.
Trường hợp 1: Hình thang có hai cạnh bên bằng nhau nhưng không song song với nhau thì hình thang đó là hình thang cân.
Hình minh họa:
Trường hợp 2: Hình thang có hai cạnh bên bằng nhau và song song với nhau thì hình thang đó là hình bình hành.
Hình minh họa:
2. Dấu hiệu nhận biết
Câu hỏi: Hãy viết giả thiết, kết luận của Định lí 2.
Lời giải:
Giả thiết, kết luận của Định lí 2:
Luyện tập 2: Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E và tia phân giác của góc B cắt CD tại F (H.3.32).
a) Chứng minh hai tam giác ADE và CBF là những tam giác cân, bằng nhau.
b) Tứ giác DEBF là hình gì? Tại sao?
Lời giải:
Thực hành 2: Chia một sợi dây xích thành bốn đoạn: hai đoạn dài bằng nhau, hai đoạn ngắn bằng nhau và đoạn dài, đoạn ngắn xen kẽ nhau. Hỏi khi móc hai đầu mút của sợi dây xích đó lại để được một tứ giác ABCD (có các đỉnh tại các điểm chia) như Hình 3.33 thì tứ giác ABCD là hình gì? Tại sao?
Lời giải:
Đoạn dây xích được chia thành:
• Hai đoạn dài có độ dài bằng nhau, tức là AB = CD;
• Hai đoạn ngắn có độ dài bằng nhau, tức là AD = BC.
Tứ giác ABCD có AB = CD; AD = BC nên tứ giác ABCD là hình bình hành.
Câu hỏi: Hãy biết giả thiết, kết luận của Định lí 3.
Lời giải:
Giả thiết, kết luận của Định lí 3:
Luyện tập 3: Cho hai điểm A, B phân biệt và điểm O không nằm trên đường thẳng AB. Gọi A’, B’ là các điểm sao cho O là trung điểm của AA’, BB’. Chứng minh rằng A’B’ = AB và đường thẳng A’B’ song song với đường thẳng AB.
Lời giải:
Xét tứ giác ABA'B' ta có: AA' và BB' là hai đường chéo của tứ giác; O là trung điểm của mỗi đường, suy ra ABA'B' là hình bình hành
Từ đó suy ra A'B' = AB và A'B' // AB.
Vận dụng: Trở lại bài toán mở đầu. Em hãy vẽ hình và nêu cách vẽ con đường cần mở.
Lời giải:
Gọi điểm giao nhau giữa hai đường thẳng a và b là điểm C.
– Vẽ tia Cx đi qua điểm O. Trên tia Cx lấy điểm D sao cho OC = OD (hay O là trung điểm của CD).
– Qua D vẽ tia Dy // a cắt tia b tại B; vẽ Dz // b cắt a tại A.
Khi đó tứ giác ACBD có AC // BD; AD // BC nên là hình bình hành.
Suy ra hai đường chéo AB, CD cắt nhau tại trung điểm của mỗi đường.
Mà O là trung điểm CD nên O là trung điểm của AB, hay OA = OB.
Vậy con đường đi qua O sao cho OA = OB được mở như trên.
Bài tập
Bài 3.13: Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? Vì sao?
a) Hình thang có hai cạnh bên song song là hình bình hành.
b) Hình thang có hai cạnh bên bằng nhau là hình bình hành.
c) Tứ giác có hai cạnh đối nào cũng song song là hình bình hành.
Lời giải:
a) Hình thang có hai cạnh bên song song là hình bình hành là khẳng định đúng vì khi đó tứ giác có hai cặp cạnh đối song song nên là hình bình hành.
b) Hình thang có hai cạnh bên bằng nhau là hình thang cân hoặc hình bình hành.
Vậy khẳng định b) sai.
c) Tứ giác có hai cạnh đối nào cũng song song hay có hai cặp cạnh đối song song nên tứ giác đó là hình bình hành.
Vậy khẳng định c) đúng.
Bài 3.14: Tính các góc còn lại của hình bình hành ABCD trong Hình 3.35.
Lời giải:
Bài 3.15: Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AB, CD. Chứng minh BF = DE.
Lời giải:
Vì ABCD là hình bình hành nên AB = CD, AB // CD.
Mà E, F lần lượt là trung điểm của AB, CD nên AE = BE = AB, CF = DF = CD.
Do đó AE = BE = CF = DF.
Xét tứ giác BEDF có:
BE = DF (chứng minh trên);
BE // DF (vì AB // CD)
Do đó tứ giác BEDF là hình bình hành.
Suy ra BF = DE (đpcm).
Bài 3.16: Trong mỗi trường hợp sau đây, tứ giác nào là hình bình hành, tứ giác nào không là hình bình hành? Vì sao?
Lời giải:
a)
b)
c)
Bài 3.17: Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AB, CD. Chứng minh rằng:
a) Hai tứ giác AEFD, AECF là những hình bình hành;
b) EF = AD, AF = EC.
Lời giải:
a) Vì ABCD là hình bình hành nên AB = CD, AB // CD.
Mà E, F lần lượt là trung điểm của AB, CD nên AE = BE = AB, CF = DF = CD
Do đó AE = BE = CF = DF.
• Xét tứ giác AEFD có:
AE // DF (vì AB // CD);
AE = DF (chứng minh trên)
Do đó tứ giác AEFD là hình bình hành.
• Xét tứ giác AECF có:
AE // CF (vì AB // CD);
AE = CF (chứng minh trên)
Do đó tứ giác AECF là hình bình hành.
Vậy hai tứ giác AEFD, AECF là những hình bình hành.
b) Vì tứ giác AEFD là hình bình hành nên EF = AD.
Vì tứ giác AECF là hình bình hành nên AF = EC.
Vậy EF = AD, AF = EC.
Bài 3.18: Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Một đường thẳng đi qua O lần lượt cắt các cạnh AB, CD của hình bình hành tại hai điểm M, N. Chứng minh ∆OAM = ∆OCN. Từ đó suy ra tứ giác MBND là hình bình hành.
Lời giải:
Vì ABCD là hình bình hành nên ta có:
• Hai đường chéo AC và BD cắt nhau tại O nên OA = OC, OB = OD.
• AB // CD nên AM // CN suy ra (hai góc so le trong).
Xét ∆OAM và ∆OCN có:
(chứng minh trên)
OA = OC (chứng minh trên)
(hai góc đối đỉnh)
Do đó ∆OAM = ∆OCN (g.c.g).
Suy ra AM = CN (hai cạnh tương ứng)
Mặt khác, AB = CD (chứng minh trên); AB = AM + BM; CD = CN + DN.
Suy ra BM = DN.
Xét tứ giác MBND có:
• BM // DN (vì AB // CD)
• BM = DN (chứng minh trên)
Do đó, tứ giác MBND là hình bình hành.