Bài 4.13: Tìm độ dài x trong Hình 4.30
Lời giải:
Trong Hình 4.30 có mà hai góc này ở vị trí so le trong nên MN // DE.
Áp dụng định lí Thalès vào tam giác DEF có MN // DE, ta có:
hay .
Suy ra (đvđd).
Vậy x = 4 (đvđd).
Bài 4.14: Cho tứ giác ABCD, gọi E, F, K lần lượt là trung điểm của AD, BC, AC.
a) Chứng minh EK // CD, FK // AB.
b) So sánh EF và .
Lời giải:
a) Xét ΔADC có
E là trung điểm của AD
K là trung điểm của AC
Do đó: EK là đường trung bình của ΔADC
Suy ra: EK//DC
Xét ΔABC có
K là trung điểm của AC
F là trung điểm của BC
Do đó: KF là đường trung bình của ΔABC
Suy ra: KF//AB
b) EK là đường trung bình của ΔADC suy ra
KF là đường trung bình của ΔABC suy ra
Ta có:
Bài 4.15: Cho tam giác ABC, phân giác AD (D ∈ BC). Đường thẳng qua D song song với AB cắt AC tại E. Chứng minh rằng
Lời giải:
Theo đề bài, AD là tia phân giác của , áp dụng tính chất đường phân giác vào tam giác ABC, ta có: (1)
Đường thẳng qua D song song với AB cắt AC tại E hay DE // AB, áp dụng định lí Thalès vào tam giác ABC, ta có: (2)
Từ (1) và (2) suy ra (đpcm).
Bài 4.16: Tam giác ABC có AB = 15 cm, AC = 20 cm, BC = 25 cm. Đường phân giác của góc BAC cắt cạnh BC tại D.
a) Tính độ dài các đoạn thẳng DB và DC.
b) Tính tỉ số diện tích của hai tam giác ABD và ACD.
Lời giải:
a) Trong tam giác ABC, ta có: AD là đường phân giác góc A
Mà AB = 15 cm và AC = 20 cm (gt)
Nên
b) Kẻ
Ta có
Mà
Bài 4.17: Cho hình bình hành ABCD, một đường thẳng đi qua D cắt AC, AB, CB theo thứ tự tại M, N, K. Chứng minh rằng: DM2 = MN.MK.
Lời giải:
Vì ABCD là hình bình hành nên AB // CD, AD // BC suy ra AN // cD, ad // ck.
Áp dụng định lí Thalès vào tam giác AMN có AN // CD, ta được:
(1)
Áp dụng định lí Thalès vào tam giác ADM có CK // AD, ta được:
(2)
Từ (1) và (2) suy ra: .
Do đó DM2 = MN . MK(đpcm).