Giải SGK Toán 8 Kết nối tri thức Luyện tập chung (trang 87, 88)

Bài 4.13: Tìm độ dài x trong Hình 4.30

Bài 4.13 trang 88 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

Trong Hình 4.30 có DEM^=EMN^ mà hai góc này ở vị trí so le trong nên MN // DE.

Áp dụng định lí Thalès vào tam giác DEF có MN // DE, ta có:

MFMD=NFNE hay 23=x6.

Suy ra x=2  .  63=4 (đvđd).

Vậy x = 4 (đvđd).

Bài 4.14: Cho tứ giác ABCD, gọi E, F, K lần lượt là trung điểm của AD, BC, AC.

a) Chứng minh EK // CD, FK // AB.

b) So sánh EF và 12(AB+CD).

Lời giải:

Giải Bài tập 4.14 trang 88 sgk Toán 8 tập 1 Kết nối

a) Xét ΔADC có 

E là trung điểm của AD

K là trung điểm của AC

Do đó: EK là đường trung bình của ΔADC

Suy ra: EK//DC

Xét ΔABC có 

K là trung điểm của AC

F là trung điểm của BC

Do đó: KF là đường trung bình của ΔABC

Suy ra: KF//AB

b) EK là đường trung bình của ΔADC suy ra EK=CD2

KF là đường trung bình của ΔABC suy ra KF=AB2

Ta có: EFEK+KF=CD2+AB2=AB+CD2


Bài 4.15: Cho tam giác ABC, phân giác AD (D ∈ BC). Đường thẳng qua D song song với AB cắt AC tại E. Chứng minh rằng ACAB=ECEA

Lời giải:

Bài 4.15 trang 88 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Theo đề bài, AD là tia phân giác của BAC^, áp dụng tính chất đường phân giác vào tam giác ABC, ta có: ACAB=DCDB             (1)

Đường thẳng qua D song song với AB cắt AC tại E hay DE // AB, áp dụng định lí Thalès vào tam giác ABC, ta có: DCDB=ECEA                    (2)

Từ (1) và (2) suy ra ACAB=ECEA (đpcm).

Bài 4.16: Tam giác ABC có AB = 15 cm, AC = 20 cm, BC = 25 cm. Đường phân giác của góc BAC cắt cạnh BC tại D.

a) Tính độ dài các đoạn thẳng DB và DC.

b) Tính tỉ số diện tích của hai tam giác ABD và ACD.

Lời giải:

Giải Bài tập 4.15 trang 88 sgk Toán 8 tập 1 Kết nối

a) Trong tam giác ABC, ta có: AD là đường phân giác góc A

DBDC=ABAC

Mà AB = 15 cm và AC = 20 cm (gt)

Nên DBDC=1520

DBDB+DC=1515+20 (tính chất tỉ lệ thức)

DBBC=1535DB=1535×BC=1535×25=757 (cm)

DC=DB:34=1007

b) Kẻ AHBC

Ta có SABD=12AH×BD

SACD=12AH×CD

SABDSACD=12AH×BD12AH×CD=BDDC

Mà DBDC=1512=34

SABDSACD=34 


Bài 4.17: Cho hình bình hành ABCD, một đường thẳng đi qua D cắt AC, AB, CB theo thứ tự tại M, N, K. Chứng minh rằng: DM2 = MN.MK.

Lời giải:

Bài 4.17 trang 88 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Vì ABCD là hình bình hành nên AB // CD, AD // BC suy ra AN // cD, ad // ck.

Áp dụng định lí Thalès vào tam giác AMN có AN // CD, ta được:

DMMN=CMAM           (1)

Áp dụng định lí Thalès vào tam giác ADM có CK // AD, ta được:

MKDM=CMAM           (2)

Từ (1) và (2) suy ra: DMMN=MKDM=CMAM .

Do đó DM2 = MN . MK(đpcm).