A. Trắc nghiệm
Bài 1.39: Đơn thức −23x2yz3 có
A. hệ số −2, bậc 8.
B. hệ số −23, bậc 5.
C. hệ số −1, bậc 9.
D. hệ số −23, bậc 6.
Đáp án: D
Giải thích:
Đơn thức −23x2yz3 có hệ số là −23 và có bậc là: 2 + 1 + 3 = 6.
Vậy đơn thức −23x2yz3 có hệ số là −23 và có bậc là 6.
Bài 1.40: Gọi T là tổng, H là hiệu của hai đa thức 3x2y – 2xy2 + xy và –2x2y + 3xy2 + 1. Khi đó:
A. T = x2y – xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.
B. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.
C. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 – xy – 1.
D. T = x2y + xy2 + xy – 1 và H = 5x2y + 5xy2 + xy – 1.
Đáp án: B
Giải thích:
Bài 1.41: Tích của hai đơn thức 6x2yz và −2y2z2 là đơn thức
A. 4x2y3z3.
B. −12x2y3z3.
C. −12x3y3z3.
D. 4x3y3z3.
Đáp án: B
Giải thích:
Ta có 6x2yz . (−2y2z2) = [6 . (−2)] x2 (y . y2) (z . z2) = −12x2y3z3.
Vậy tích của hai đơn thức 6x2yz và −2y2z2 là đơn thức −12x2y3z3.
Bài 1.42 trang 27 Toán 8 Tập 1: Khi chia đa thức 8x3y2 – 6x2y3 cho đơn thức −2xy, ta được kết quả là
A. −4x2y + 3xy2.
B. −4xy2 + 3x2y.
C. −10x2y + 4xy2.
D. −10x2y + 4xy2.
Đáp án: A
Giải thích:
B. Tự luận
Bài 1.43: Một đa thức hai biến bậc hai thu gọn có thể có nhiều nhất
a) bao nhiêu hạng tử bậc hai? Cho ví dụ.
b) bao nhiêu hạng tử bậc nhất? Cho ví dụ.
c) bao nhiêu hạng tử khác 0? Cho ví dụ.
Lời giải:
Bài 1.44: Cho biểu thức 3x3(x5 – y5) + y5(3x3 – y3).
a) Rút gọn biểu thức đã cho.
b) Tính giá trị của biểu thức đã cho nếu biết
Lời giải:
a) Ta có 3x3(x5 – y5) + y5(3x3 – y3)
= 3x3 . x5 – 3x3 . y5 + y5 . 3x3 – y5 . y3
= 3x8 – 3x3y5 + 3x3y5 – y8 = 3x8 – y8.
b) Ta có suy ra hay y8 = 3x8.
Thay y8 = 3x8 vào biểu thức 3x8 – y8, ta được: 3x8 – 3x8 = 0.
Vậy nếu thì giá trị của biểu thức đã cho bằng 0.
Bài 1.45: Rút gọn biểu thức:
.
Lời giải:
Bài 1.46: Bạn Thành dùng một miếng bìa hình chữ nhật để làm một chiếc hộp (không nắp) bằng cách cắt bốn hình vuông cạnh x centimét ở bốn góc (H.1.3) rồi gấp lại. Biết rằng miếng bìa có chiều dài là y centimét, chiều rộng là z centimét.
Tìm đa thức (ba biến x, y, z) biểu thị thể tích của chiếc hộp. Xác định bậc của đa thức đó.
Lời giải:
Cắt miếng bìa hình chữ nhật để làm một chiếc hộp (không nắp) thì chiếc hộp có:
• Chiều dài là: y – 2x (cm)
• Chiều rộng là: z – 2x (cm)
• Chiều cao là: x (cm)
Đa thức biểu thị thể tích của chiếc hộp là:
x(y – 2x)(z – 2x) = (xy – 2x2)(z – 2x) = xyz – 2x2y – 2x2z + 4x3.
Đa thức xyz – 2x2y – 2x2z + 4x3 có bậc là 3.
Bài 1.47: Biết rằng D là một đơn thức sao cho –2x3y4 : D = xy2. Hãy tìm thương của phép chia:
(10x5y2 – 6x3y4 + 8x2y5) : D.
Lời giải:
Bài 1.48: Làm phép chia sau theo hướng dẫn:
[8x3(2x – 5)2 – 6x2(2x – 5)3 + 10x(2x – 5)2] : 2x(2x – 5)2.
Hướng dẫn: Đặt y = 2x – 5.
Lời giải:
Đặt y = 2x – 5.
Khi đó, ta có [8x3(2x – 5)2 – 6x2(2x – 5)3 + 10x(2x – 5)2] : 2x(2x – 5)2
= (8x3y2 – 6x2y3 + 10xy2) : 2xy2
= 8x3y2 : 2xy2 – 6x2y3 : 2xy2 + 10xy2 : 2xy2
= 4x2 – 3xy + 5 = 4x2 – 3x(2x – 5) + 5
= 4x2 – 6x2 + 15x + 5 = – 2x2 + 15x + 5.
Vậy [8x3(2x – 5)2 – 6x2(2x – 5)3 + 10x(2x – 5)2] : 2x(2x – 5)2 = – 2x2 + 15x + 5.