Mở đầu: Cho B và C là hai điểm cách nhau bởi một hồ nước như Hình 4.12 với D, E lần lượt là trung điểm của AB và AC. Biết DE = 500 m, liệu không cần đo trực tiếp, ta có thể tính được khoảng cách giữa hai điểm B và C không?
Lời giải:
Trong tam giác ABC có D, E lần lượt là trung điểm của AB và AC nên D ∈ AB; E ∈ AC và AD = BD; AE = EC.
Suy ra DE là đường trung bình của tam giác ABC.
Do đó suy ra BC = 2DE = 2 . 500 = 1 000 (m)
Vậy khoảng cách giữa hai điểm B và C bằng 1 000 m.
1. Định nghĩa đường trung bình của tam giác
Câu hỏi: Em hãy chỉ ra các đường trung bình của ∆DEF và ∆IHK trong Hình 4.14.
Lời giải:
Quan sát Hình 4.14, ta thấy:
* Xét ∆DEF có M là trung điểm của cạnh DE; N là trung điểm của cạnh DF nên MN là đường trung bình của ∆DEF.
* Xét ∆IHK có:
• B là trung điểm của cạnh IH; C là trung điểm của cạnh IK nên BC là đường trung bình của ∆IHK.
• B là trung điểm của cạnh IH; A là trung điểm của cạnh HK nên AB là đường trung bình của ∆IHK.
• A là trung điểm của cạnh HK; C là trung điểm của cạnh IK nên AC là đường trung bình của ∆IHK.
Vậy đường trung bình của ∆DEF là MN; các đường trung bình của ∆IHK là AB, BC, AC.
2. Tính chất đường trung bình của tam giác
Hoạt động 1: Cho DE là đường trung bình của tam giác ABC (H.4.15).
Sử dụng định lí Thalès đảo, chứng minh rằng DE // BC.
Lời giải:
Ta có: D là trung điểm của AB nên
E là trung điểm của AC nên
Suy ra
Hoạt động 2: Cho DE là đường trung bình của tam giác ABC (H.4.15).
Lời giải:
Ta có: F là trung điểm của BC nên CF = BC, suy ra .
Mà E là trung điểm của AC nên CE = CA, suy ra .
Do đó trong DABC có , theo định lí Thalès đảo ta có: EF // AB.
Xét tứ giác DEFB có DE // BF (vì DE // BC, theo HĐ1); EF // BD (vì EF // AB)
Do đó tứ giác DEFB là hình bình hành.
Suy ra DE = BF mà BF = BC nên DE = BC.
Luyện tập: Cho tam giác ABC cân tại A, D và E lần lượt là trung điểm của AB, AC. Tứ giác DECB là hình gì? Tại sao?
Lời giải:
ΔABC có: DA=DB(gt)
EA=EC(gt)
=> DE là đường trung bình của ΔABC
=> DE//BC
Xét tứ giác BDEC có: DE//BC
=> Tứ giác BDEC là hình thang
Mà:
=> Tứ giác BDEC là hình thang cân
Vận dụng: Em hãy trả lời câu hỏi trong tình huống mở đầu.
Cho B và C là hai điểm cách nhau bởi một hồ nước như Hình 4.12 với D, E lần lượt là trung điểm của AB và AC. Biết DE = 500 m, liệu không cần đo trực tiếp, ta có thể tính được khoảng cách giữa hai điểm B và C không?
Lời giải:
Trong tam giác ABC có D, E lần lượt là trung điểm của AB và AC nên D ∈ AB; E ∈ AC và AD = BD; AE = EC.
Suy ra DE là đường trung bình của tam giác ABC.
Do đó suy ra BC = 2DE = 2 . 500 = 1 000 (m)
Bài tập
Bài 4.6: Tính các độ dài x, y trong Hình 4.18.
Lời giải:
a) HK là đường trung bình suy ra
b) Ta có:
Mặt khác M là trung điểm AB nên MN là đường trung bình của tam giác ABC
Suy ra N là trung điểm BC
Bài 4.7: Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC.
a) Chứng minh tứ giác BMNC là hình thang.
b) Tứ giác MNPB là hình gì? Tại sao?
Lời giải:
a) Vì M, N lần lượt là trung điểm của các cạnh AB, AC nên MN là đường trung bình của tam giác ABC suy ra MN // BC.
Tứ giác BMNC có MN // BC nên tứ giác BMNC là hình thang (đpcm).
b) Vì N, P lần lượt là trung điểm của các cạnh AC, BC nên NP là đường trung bình của tam giác ABC suy ra NP // AB hay NP // MB.
Tứ giác MNPB có MN // BP (do MN // BC); BM // NP (chứng minh trên).
Do đó, tứ giác MNPB là hình bình hành.
Bài 4.8: Cho tam giác ABC có trung tuyến AM. Lấy điểm D và E trên cạnh AB sao cho AD = DE = EB và D nằm giữa hai điểm A, E.
a) Chứng minh DC // EM.
b) DC cắt AM tại I. Chứng minh I là trung điểm của AM.
Lời giải:
a) Xét ΔBDC có
E là trung điểm của BD(BE=ED; B,E,D thẳng hàng)
M là trung điểm của BC(gt)
Do đó: EM là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)
⇒ ME//CD (Định lí 2 về đường trung bình của tam giác)
b) Xét ΔAEM có
D là trung điểm của AE(AD=DE; A,D,E thẳng hàng)
DI//EM(cmt)
Do đó: I là trung điểm của AM (Định lí 1 về đường trung bình của tam giác)
nên AI=IM(đpcm)
Bài 4.9: Cho hình chữ nhật ABCD có AC cắt BD tại O. Gọi H, K lần lượt là trung điểm của AB, AD. Chứng minh tứ giác AHOK là hình chữ nhật.
Lời giải:
Vì ABCD là hình chữ nhật nên và hai đường chéo AC, BD bằng nhau và cắt nhau tại trung điểm O của mỗi đường.
Suy ra AB ⊥ AD; O là trung điểm của AC và BD.
Vì O, H lần lượt là trung điểm của BD và AB nên OH là đường trung bình của tam giác ABD.
Suy ra OH // AD mà AB ⊥ AD nên OH ⊥ AB hay .
Tương tự, ta chứng minh được: OK ⊥ AD hay .
Ta có:
Suy ra .
Tứ giác AHOK có .
Do đó, tứ giác AHOK là hình chữ nhật.