Giải SGK Toán 8 Kết nối tri thức Bài 16: Đường trung bình của tam giác

Mở đầu: Cho B và C là hai điểm cách nhau bởi một hồ nước như Hình 4.12 với D, E lần lượt là trung điểm của AB và AC. Biết DE = 500 m, liệu không cần đo trực tiếp, ta có thể tính được khoảng cách giữa hai điểm B và C không?

Mở đầu trang 81 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

Trong tam giác ABC có D, E lần lượt là trung điểm của AB và AC nên D ∈ AB; E ∈ AC và AD = BD; AE = EC.

Suy ra DE là đường trung bình của tam giác ABC.

Do đó DE=12BC suy ra BC = 2DE = 2 . 500 = 1 000 (m)

Vậy khoảng cách giữa hai điểm B và C bằng 1 000 m.

1. Định nghĩa đường trung bình của tam giác

Câu hỏi: Em hãy chỉ ra các đường trung bình của ∆DEF và ∆IHK trong Hình 4.14.

Câu hỏi trang 81 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

Quan sát Hình 4.14, ta thấy:

* Xét ∆DEF có M là trung điểm của cạnh DE; N là trung điểm của cạnh DF nên MN là đường trung bình của ∆DEF.

* Xét ∆IHK có:

• B là trung điểm của cạnh IH; C là trung điểm của cạnh IK nên BC là đường trung bình của ∆IHK.

• B là trung điểm của cạnh IH; A là trung điểm của cạnh HK nên AB là đường trung bình của ∆IHK.

• A là trung điểm của cạnh HK; C là trung điểm của cạnh IK nên AC là đường trung bình của ∆IHK.

Vậy đường trung bình của ∆DEF là MN; các đường trung bình của ∆IHK là AB, BC, AC.

2. Tính chất đường trung bình của tam giác

Hoạt động 1: Cho DE là đường trung bình của tam giác ABC (H.4.15).

HĐ1 trang 82 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Sử dụng định lí Thalès đảo, chứng minh rằng DE // BC.

Lời giải:

Ta có:  D là trung điểm của AB nên ADAB=12

E là trung điểm của AC nên AEAC=12

Suy ra ADAB=AEAC do đó DE // BC


Hoạt động 2: Cho DE là đường trung bình của tam giác ABC (H.4.15).

HĐ2 trang 82 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

Ta có: F là trung điểm của BC nên CF = 12BC, suy ra CFBC=12.

Mà E là trung điểm của AC nên CE = 12CA, suy ra CECA=12.

Do đó trong DABC có CFBC=CECA=12, theo định lí Thalès đảo ta có: EF // AB.

Xét tứ giác DEFB có DE // BF (vì DE // BC, theo HĐ1); EF // BD (vì EF // AB)

Do đó tứ giác DEFB là hình bình hành.

Suy ra DE = BF mà BF = 12BC nên DE = 12BC.

Luyện tập: Cho tam giác ABC cân tại A, D và E lần lượt là trung điểm của AB, AC. Tứ giác DECB là hình gì? Tại sao?

Lời giải:

Giải Luyện tập trang 83 sgk Toán 8 tập 1 Kết nối

ΔABC có: DA=DB(gt)  

                 EA=EC(gt)

=> DE là đường trung bình của ΔABC

=> DE//BC

Xét tứ giác BDEC có: DE//BC

=> Tứ giác BDEC là hình thang

Mà: Bˆ=Cˆ (gt)

=> Tứ giác BDEC là hình thang cân


Vận dụng: Em hãy trả lời câu hỏi trong tình huống mở đầu.

Cho B và C là hai điểm cách nhau bởi một hồ nước như Hình 4.12 với D, E lần lượt là trung điểm của AB và AC. Biết DE = 500 m, liệu không cần đo trực tiếp, ta có thể tính được khoảng cách giữa hai điểm B và C không?

Vận dụng trang 83 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

Trong tam giác ABC có D, E lần lượt là trung điểm của AB và AC nên D ∈ AB; E ∈ AC và AD = BD; AE = EC.

Suy ra DE là đường trung bình của tam giác ABC.

Do đó DE=12BC suy ra BC = 2DE = 2 . 500 = 1 000 (m)

Bài tập

Bài 4.6: Tính các độ dài x, y trong Hình 4.18.

Bài 4.6 trang 83 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

a) HK là đường trung bình suy ra HK=12DE=12xx=6

b) Ta có: NMAB,ACAB MN//AC

Mặt khác M là trung điểm AB nên MN là đường trung bình của tam giác ABC 

Suy ra N là trung điểm BC  y = BN = 5


Bài 4.7: Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC.

a) Chứng minh tứ giác BMNC là hình thang.

b) Tứ giác MNPB là hình gì? Tại sao?

Lời giải:

Bài 4.7 trang 83 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

a) Vì M, N lần lượt là trung điểm của các cạnh AB, AC nên MN là đường trung bình của tam giác ABC suy ra MN // BC.

Tứ giác BMNC có MN // BC nên tứ giác BMNC là hình thang (đpcm).

b) Vì N, P lần lượt là trung điểm của các cạnh AC, BC nên NP là đường trung bình của tam giác ABC suy ra NP // AB hay NP // MB.

Tứ giác MNPB có MN // BP (do MN // BC); BM // NP (chứng minh trên).

Do đó, tứ giác MNPB là hình bình hành.

Bài 4.8: Cho tam giác ABC có trung tuyến AM. Lấy điểm D và E trên cạnh AB sao cho AD = DE = EB và D nằm giữa hai điểm A, E.

a) Chứng minh DC // EM.

b) DC cắt AM tại I. Chứng minh I là trung điểm của AM.

Lời giải:

Giải Bài tập 4.8 trang 83 sgk Toán 8 tập 1 Kết nối

a) Xét ΔBDC có

E là trung điểm của BD(BE=ED; B,E,D thẳng hàng)

M là trung điểm của BC(gt)

Do đó: EM là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

⇒ ME//CD (Định lí 2 về đường trung bình của tam giác)

b) Xét ΔAEM có

D là trung điểm của AE(AD=DE; A,D,E thẳng hàng)

DI//EM(cmt)

Do đó: I là trung điểm của AM (Định lí 1 về đường trung bình của tam giác)

nên AI=IM(đpcm)


Bài 4.9: Cho hình chữ nhật ABCD có AC cắt BD tại O. Gọi H, K lần lượt là trung điểm của AB, AD. Chứng minh tứ giác AHOK là hình chữ nhật.

Lời giải:

Bài 4.9 trang 83 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Vì ABCD là hình chữ nhật nên BAD^=90° và hai đường chéo AC, BD bằng nhau và cắt nhau tại trung điểm O của mỗi đường.

Suy ra AB ⊥ AD; O là trung điểm của AC và BD.

Vì O, H lần lượt là trung điểm của BD và AB nên OH là đường trung bình của tam giác ABD.

Suy ra OH // AD mà AB ⊥ AD nên OH ⊥ AB hay AHO^=90°.

Tương tự, ta chứng minh được: OK ⊥ AD hay AKO^=90°.

Ta có: BAD^+AHO^+AKO^+HOK^=360°

90°+90°+90°+HOK^=360°

270°+HOK^=360°

Suy ra HOK^=360°270°=90°.

Tứ giác AHOK có BAD^=90°;  AHO^=90°;  AKO^=90°;  HOK^=90° .

Do đó, tứ giác AHOK là hình chữ nhật.