Giải SGK Toán 7 Kết nối tri thức Bài tập cuối chương 4

Bài 4.33: Tính các số đo x, y trong các tam giác dưới đây (H.4.75).

Tính các số đo x, y trong các tam giác dưới đây (H.4.75)

Lời giải:

Xét hình đầu tiên:

Tính các số đo x, y trong các tam giác dưới đây (H.4.75)

Ta có x+x+20°+x+10°=180°.

hay 3x+30°=180° hay 3x=180°30°=150°.

 Do đó x=50°.

Xét hình thứ hai:

Tính các số đo x, y trong các tam giác dưới đây (H.4.75)

Ta có 60°+y+2y=180°.

hay 60°+3y=180° hay 3y=180°60°=120°.

Do đó y=40°.

Vậy x=50°,y=40°.

Bài 4.34: Trong Hình 4.76, có AM = BM, AN = BN. Chứng minh rằng MAN^=MBN^.

Trong Hình 4.76, có AM = BM, AN = BN. Chứng minh rằng góc MAN= góc MBN

Lời giải:


Bài 4.35: Trong Hình 4.77, có AO = BO, OAM^=OBN^. Chứng minh rằng AM = BN.

Trong Hình 4.77, có AO = BO,góc OAM= góc OBN. Chứng minh rằng AM = BN

Lời giải:


Bài 4.36: Trong Hình 4.78, ta có AN = BM, BAN^=ABM^. Chứng minh rằng  BAM^=ABN^.

Trong Hình 4.78, ta có AN = BM, góc BAN= góc ABM. Chứng minh rằng: góc BAM=góc ABN

Lời giải:

Xét hai tam giác BAM và ABN có:

AB chung.

ABM^=BAN^ (theo giả thiết).

BM = AN (theo giả thiết).

Do đó ΔBAM=ΔABN (c – g – c).

Vậy BAM^=ABN^ (2 góc tương ứng).

Bài 4.37: Cho M, N là hai điểm phân biệt nằm trên đường trung trực của đoạn thẳng AB sao cho AM = AN. Chứng minh rằng MB = NB và góc AMB bằng góc ANB.

Lời giải:

Vì M, N nằm trên đường trung trực của AB nên MA = MB ; NA = NB ( tính chất)

Mà MA = NA (gt)

=> MA = NA = MB = NB nên tứ giác AMBN là hình thoi

Bài 4.38: Cho tam giác ABC cân tại A có A^=120°. Trên cạnh BC lấy hai điểm M, N sao cho MA, NA lần lượt vuông góc với AB, AC.

Chứng minh rằng:

a) ΔBAM=ΔCAN;

b) Các tam giác ANB, AMC lần lượt cân tại N, M.

Lời giải:



Bài 4.39: Cho tam giác ABC vuông tại A có B^=60°. Trên cạnh BC lấy điểm M sao cho CAM^=30°. Chứng minh rằng:

a) Tam giác CAM cân tại M;

b) Tam giác BAM là tam giác đều;

c) M là trung điểm của đoạn thẳng BC.

Lời giải:


c) Do tam giác CAM cân tại M nên MA = MC (1).

Do tam giác BAM là tam giác đều nên MA = MB (2).

Từ (1) và (2) ta có MB = MC.

Mà M nằm giữa B và C nên M là trung điểm của BC.

Vậy M là trung điểm của BC.