Giải SGK Toán 7 Kết nối tri thức Luyện tập chung (trang 85, 86)

Bài 4.29: Cho Hình 4.73. Hãy tìm số đo x, y của các góc và độ dài a, b của các đoạn thẳng trên hình vẽ.

Cho Hình 4.73. Hãy tìm số đo x, y của các góc và độ dài a, b của các đoạn thẳng trên hình vẽ

Lời giải:

Xét tam giác ABC có BAC^+ABC^+BCA^=180°.

Do đó ABC^=180°BAC^BCA^ hay y=180°45°75°=60°.

Xét tam giác ABD có BAD^+ABD^+BDA^=180°.

Do đó BAD^=180°ABD^BDA^ hay x=180°60°75°=45°.

Xét hai tam giác ABC và ABD có:

CAB^=DAB^ (cùng bằng 45o).

AB chung.

ABC^=ABD^ (cùng bằng 60o).

Do đó ΔABC=ΔABD (g – c – g).

Khi đó BC = BD = 3,3 cm (2 cạnh tương ứng), AC = AD = 4 cm (2 cạnh tương ứng).

hay a = 3,3 cm; b = 4 cm.

Vậy x=45°;y=60°; a = 3,3 cm; b = 4 cm.

Bài 4.30: Cho góc xOy. Trên tia Ox lấy hai điểm A, M; trên tia Oy lấy hai điểm B, N sao cho OA = OB, OM = ON, OA > OM. Chứng minh rằng:

a) ΔOAN=ΔOBM;

b) ΔAMN=ΔBNM.

Lời giải:

Giải luyện tập chung trang 85

a. Xét ΔOAN và ΔOBM, ta có :

  • OA= OB
  • Góc O chung
  • OM= ON

=> ΔOAN = ΔOBM (c-g-c)

b. Từ câu a => AN= BM. Mà OA = OB=> AM =BN

Xét ΔAMN và ΔBNM, ta có :

  • AN= BM
  • AM =BN
  • MN chung

=> ΔAMN = ΔBNM (c-c-c)

Bài 4.31: Cho Hình 4.74, biết OA = OB, OC = OD. Chứng minh rằng:

a) AC = BD;

b) ΔACD=ΔBDC.

Cho Hình 4.74, biết OA = OB, OC = OD. Chứng minh rằng: AC = BD

Lời giải:


Bài 4.32: Cho tam giác MBC vuông tại M có B^=60°. Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều.

Lời giải:

Bài 4.32 trang 86 Toán 7 Tập 1 | Kết nối tri thức Giải Toán 7

Xét hai tam giác AMC vuông tại M và BMC vuông tại M có:

AM = BM (theo giả thiết).

MC chung.

Do đó ΔAMC=ΔBMC (2 cạnh góc vuông).

Khi đó AC = BC (2 cạnh tương ứng).

Tam giác ABC có AC = BC nên tam giác ABC cân tại C.

Tam giác ABC cân tại C lại có ABC^=60° nên tam giác ABC là tam giác đều.

Vậy tam giác ABC là tam giác đều.